Helderheid: water in een reageerbuisje oid stoppen en in een lichtintensiteitsmeter bij natuurkunde gooien (of absorbtie dinges als je echt uit je dak wil gaan). pH: meer water nemen en er pH strookjes van scheikunde indoen. Meer experimenten: laat het een dag staan, kijk of het (meer) gaat stinken => dingen die doodgaan waarschijnlijk. Of zet het juist onder een warmte/lichtbron (oftewel een gloeilamp) en kijk of er dingen in gaan groeien.quote:Op maandag 14 april 2008 23:03 schreef duncannn het volgende:
Voor biologie moet ik een PO maken over een 'open onderzoek'. Ik heb besloten om de waterkwaliteit van een slootje hier in de buurt te onderzoeken.
Wie weet een goede manier om dit aan te pakken? wat voor materiaal heb ik nodig om b.v. de helderheid of de pH van het water te bepalen? Wat is er nog meer aan slootwater te 'onderzoeken'.
Bedankt.
quote:Op dinsdag 15 april 2008 08:22 schreef -J-D- het volgende:
tvp
Terugvindpost, sommige mensen gebruiken hun 'mijn actieve topics' waar bookmarks eigenlijk voor bedoeld zijn.quote:Op woensdag 16 april 2008 12:59 schreef teletubbies het volgende:
ik vraag me al een tijdje af wat tvp betekent:S
Klopt. Meestal is het wel duidelijk welke actie er bedoeld wordt (uit de context of uit gezond verstand). Indien dat niet duidelijk is, wordt de actie met een subscript aan het semi-direct-producttekentje toegevoegd.quote:Op woensdag 16 april 2008 21:42 schreef zuiderbuur het volgende:
tvp
Maar om er een verkapte tvp van te maken, toch even snel een vraag...... ik zie heel vaak dat auteurs een groep weergeven als een semidirect product: A (tekentje dat ik hier niet kan doen
) B
Maar dat bepaalt toch niet (op isomorfie na) de groep? Hier moet je toch ook nog een morfisme van de ene groep naar de automorfismengroep van de andere geven? Waarom doen auteurs dat dan niet?
Ik denk dat het te maken heeft met het oplossen in zwavelzuur, waardoor je met een zuur milieu te maken hebt. Dit zou betekenen dat de OH- en H3O+ gaan reageren en OH- niet meer aanwezig is.quote:Op donderdag 17 april 2008 14:00 schreef BK89 het volgende:
[ afbeelding ]
Waarom is hier OH^- fout en moet ik H2O gebruiken?
Thanks alvast
Ja.quote:Op donderdag 17 april 2008 17:57 schreef Haushofer het volgende:
Even een kort vraagje over integreren. Als ik op een n-dimensionale compacte manifold M een n-vorm integreer die te schrijven is als dw ( dus exact is, en waarbij w een (n-1)-vorm is ) , krijg ik dan altijd 0? Ik zou zeggen van wel, via Stokes:
[ afbeelding ]
Iemand?![]()
Merciquote:
SPOILEROm spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
Kan je dat niet met de formule doen voor derdegraadsveeltermen?quote:Op zaterdag 19 april 2008 23:17 schreef teletubbies het volgende:
het getal x=cos(2pi/7) zou ik graag willen uitdrukken in irreducibele radicalen over Q.Ik heb inmiddels al t minimumpolynoom kunnen vinden:f= 8x^3+4x^2-4x-1. Deze is irr. want f(x/2) is irreducibel (modulo 2 dacht ik).
Maar ik zou graag willen weten wat irreducibele radicalen alweer betekenden en hoe ik verder zou moeten gaan om dit probleem om te lossen..
Nogmaals bedankt
De normale verdeling werkt nooit op een interval, dus ik neem aan dat je de uniforme verdeling bedoelt (maakt voor de verdere uitwerking niet uit). Wat je moet doen, is kijken naar de kansverdeling van de som, en dat kan oa via de convolutieformule (doorscrollen tot kansrekening).quote:Op maandag 21 april 2008 08:13 schreef TC03 het volgende:
Ik heb twee normaalverdelingen. Eentje van [0 ... 21] en eentje van [28 ... 41]. Er wordt gevraagd wat de kans is dat het verschil kleiner is dan 16. Kan je dan gewoon zeggen dat het verschil ook normaal verdeeld is, alleen dan op het interval [7 ... 41]?
Je berekening van sigma is onjuist, en ik zie niet hoe je dat gedaan hebt. Ik kom wel op 2.6%quote:Op maandag 21 april 2008 13:13 schreef TC03 het volgende:
Hmm, en dan wordt mu -24 en sigma (28.12-24)/3? Maar als ik dan de kans bereken dat het kleiner dan 16 (het gebied van -16 tot 0, toch?) is kom ik uit op hele kleine waardes, terwijl het antwoord 2,5% moet zijn.
Niemand heeft gezegd dat het leven mooi is.quote:Op zondag 20 april 2008 21:59 schreef teletubbies het volgende:
cardano formule? Dat meen je niet ! Die formule is niet mooi!
Lijkt me een goede vraag?quote:Maar goed, irreducibele radicalen zijn toch ....? wat zijn ze eigenlijk?
Ik neem aan dat je bij die eerste x bedoelt ipv s ?quote:Op dinsdag 22 april 2008 13:53 schreef ekain2 het volgende:
x^3+3x^2+3s+1 en s^3+4s^2+3s+12 ontbinden in factoren
alvast bedankt
OH- staat zeker wel in zo'n tabel als een sterke base.quote:Op dinsdag 22 april 2008 14:32 schreef BK89 het volgende:
Klein, waarschijnlijk makkelijk, scheikunde vraagje: waar kan ik zien dat KOH(s) of C2H5O^- (aq) een sterke base is? Ik zie het niet staan bij Binas 49 of moet dat uit het hoofd? Alvast bedankt
Oke, maar hoe kan ik bijvoorbeeld zien aan C2H5O^- (aq) dat het een sterke base is?quote:Op dinsdag 22 april 2008 16:16 schreef GlowMouse het volgende:
Haus, dat is toch niet ontbinden?
Hier is het toevallig (x+1)3, want je herkent gelijk het rijtje van het binomium (1 - 3 - 3 - 1). Algemeen zoek je bij een derdegraadspolynoom eerst een nulpunt, haal je (x-nulpunt) buiten haakjes (met een polynoomdeling), houd je daarna een kwadratische functie over en die is weer makkelijk.
[..]
OH- staat zeker wel in zo'n tabel als een sterke base.
1/(1+r) * (36,4 miljoen/r) = 140 miljoenquote:Op dinsdag 22 april 2008 16:40 schreef borisz het volgende:
Hoe los je dit op de hand op ?
1/(1+r) * 36,4 miljoen/r - 140 miljoen = 0. Antwoord is 0,2141 maar hoe kom je erop ? Ik kom er niet uit.
1/(1+r) * 36,4 miljoen/r - 140 miljoen = 0quote:Op dinsdag 22 april 2008 16:40 schreef borisz het volgende:
Hoe los je dit op de hand op ?
1/(1+r) * 36,4 miljoen/r - 140 miljoen = 0. Antwoord is 0,2141 maar hoe kom je erop ? Ik kom er niet uit.
Ohwja, zit niet zo in die terminologie. In dat geval zou ik gebruiken datquote:Op dinsdag 22 april 2008 16:16 schreef GlowMouse het volgende:
Haus, dat is toch niet ontbinden?
[/quote]quote:Op maandag 21 april 2008 21:35 schreef zuiderbuur het volgende:
[..]
Niemand heeft gezegd dat het leven mooi is.Wat wil je er dan mooier aan maken?
![]()
[..]
Lijkt me een goede vraag?![]()
Ik weet wat radicalen zijn, maar nu ben ik ook onzeker.
het heeft te maken met x^n-a. Als deze irreducibel is dan krijg je een uitbreiding die radicaal en irreducibel is,, heb ik het goed begrepen?
kijk naar de baseconstante: die is voor sterke basen >> 101 oftewel pKb < -1 . Maar dat is ook als volgt beredeneren. Een oplossing van ethanol is niet zuur (pH blijf rond de 7 hangen), dus de geconjungeerde base C2H5O- moet wel sterk zijn (in feite is een alkoxyl-ion een sterkere base als het hydroxide-ion).quote:Op dinsdag 22 april 2008 14:32 schreef BK89 het volgende:
Klein, waarschijnlijk makkelijk, scheikunde vraagje: waar kan ik zien dat KOH(s) of C2H5O^- (aq) een sterke base is? Ik zie het niet staan bij Binas 49 of moet dat uit het hoofd? Alvast bedankt
Volgt dit niet gewoon uit het feit dat de machtsverheffing continu is?quote:Op dinsdag 29 april 2008 22:12 schreef teletubbies het volgende:
indien V dicht ligt in C (complexe getallen), dan ligt de verzameling {v^2, v in V} ook dicht iN C.
Waarom:S. Geldt dit voor willekeurige gehele positieve machten in plaats van 2 ? dus v^k?
Ik denk dat ze klopt.quote:Op dinsdag 29 april 2008 23:48 schreef teletubbies het volgende:
okeey, dus als je een verzameling X hebt en A is een deelverzameling van X zodat A dicht ligt in X. en als f een continue afbeelding van X naar X. Dan ligt f(A) ook dicht in X?dit lijkt me een mooie stelling als die waar is
A Ammoniaquote:Op donderdag 1 mei 2008 16:15 schreef JOO het volgende:
Ik keek naar het examen Nask2 van vorig jaar om voor mn examen te oefenen en daar in staat de vraag:
Al je iets wilt verven, moet je het te schilderen oppervlak eerst reinigen. Daarvoor kan ammonia worden gebruikt. In een bouwmarkt wordt voor dit doel een ander schoonmaakmiddel, St Marc®, verkocht. Vincent heeft in de bouwmarkt een pak St Marc gekocht. Op de verpakking van dit schoonmaakmiddel staat de waarschuwing: 'irriterend voor de ogen'. Deze waarschuwing wordt ook aangeduid met een pictogram.
Wat is de chemische notatie van ammonia?
A NH3(aq)
B NH3(g)
C NH4(aq)
D NH4(g)
Ik wist het antwoord niet dus keek ik bij de antwoorden en daar stond dus A, maar hoezo is het antwoord A?
Bij elektrolyse of bij een elektrochemische cel?quote:Op donderdag 1 mei 2008 19:37 schreef BK89 het volgende:
Sterkste reductor (laagste E^0) is bij de negatieve elektrode.
Sterkste oxidator (hoogste E^0) is bij de positieve elektrode.
Is dat dan verschillende voor die twee?quote:Op donderdag 1 mei 2008 19:59 schreef GlowMouse het volgende:
[..]
Bij elektrolyse of bij een elektrochemische cel?
Ja, bij een elektrochemische cel verloopt de redoxreactie op de normale manier, reductor staat elektronen af die via een draadje naar de oxidator lopen (reductor is dus de negatieve elektrode, oxidator de positieve).quote:
quote:Op woensdag 30 april 2008 01:18 schreef thabit het volgende:
De stelling geldt wel als f naast continu ook nog surjectief is. Een afbeelding f:X->Y is continu dan en slechts dan als voor elke deelverzameling A van X geldt dat f(afsl(A)) bevat is in afsl(f(A)). Dus als f surjectief is en A dicht, dan volgt hieruit dat f(A) ook dicht is.
Oke, bedankt, daarom raakte ik telkens in de warquote:Op donderdag 1 mei 2008 20:47 schreef GlowMouse het volgende:
[..]
Ja, bij een elektrochemische cel verloopt de redoxreactie op de normale manier, reductor staat elektronen af die via een draadje naar de oxidator lopen (reductor is dus de negatieve elektrode, oxidator de positieve).
Bij een elektrolyse zet je spanning op de beginstoffen zodat de reactie precies de andere kant oploopt: bij de negatieve elektrode zitten lekker veel elektronen, dus daar zit de oxidator om ermee te reageren.
Statistisch kun je niets 'bewijzen'. Je observaties kunnen immers elke keer anders zijn.quote:Nu wil ik statistisch bewijzen dat er bij de tweede soort vragen meer foute antwoorden zijn gegeven
ik gebruik meestal de andere equivalente formulering van continuiteit: als het inverse beeld van een open deelverzameling open is. Niet gedacht nuttig kan zijnquote:Op donderdag 1 mei 2008 20:47 schreef zuiderbuur het volgende:
[..]
Dus ik was toch iets vergeten. Zonder surjectiviteit werkt het natuurlijk totaal niet.
Ik begrijp je... behalve de laatste zin (ben een statistiek-leekquote:Op donderdag 1 mei 2008 21:55 schreef GlowMouse het volgende:
[..]
Statistisch kun je niets 'bewijzen'. Je observaties kunnen immers elke keer anders zijn.
Met kansrekening kun je dingen wel bewijzen, maar dan moeten die dingen wel kloppen. Omdat je met kansen werkt, kan het prima zo zijn dat je bij de tweede soort vragen toch meer goede antwoorden terug krijgt. Wat je hier wilt bewijzen is dat voor iedere x de kans dat je ten hoogste x fouten maakt niet groter is bij het 3-keuzeding dan bij het 2-keuzeding (zoekwoord: stochastically larger). Met de cdf van de binomiale verdeling is dat eenvoudig te bewijzen (schrijf het als som van de pdf, en kijk naar de termen afzonderlijk).
Hoe bedoel je, dat je aan neemt dat ik alles gok? Het gaat om een echt experiment ( 78 proefpersonen maal 150 woorden)quote:Op donderdag 1 mei 2008 23:00 schreef GlowMouse het volgende:
Bij n vragen (ik neem aan dat je alles gokt) is de kans dat je er k goed hebt gelijk aan:
- bij 2 mogelijkheden: [ afbeelding ]
- bij 3 mogelijkheden: [ afbeelding ]
Hieruit kun je ook de cdf afleiden. Je moet dus aantonen dat:
[ afbeelding ]
In tegenstelling tot wat ik zei kun je hier niet volstaan met kijken naar de termen afzonderlijk. Dit heeft verder niets meer met kansrekenen te maken, en is niet leuk om voor een algemeen aantal vragen uit te werken.
Ik zou toch nog heel graag antwoord willen hierop. Niemand?quote:Op woensdag 23 april 2008 15:01 schreef Innocence het volgende:
Iemand een beetje handig met Matlab hier? Wil namelijk graag weten hoe ik het verschil tussen een originele dataset (x,y,z)-punten dus en een Delaunay triangulation van een subset hiervan bereken.
Eerst de dichtsbijzijnde punten vinden met dsearch? Of is er een methode om het verschil tussen twee surfaces te berekenen?
Red me!![]()
Bestaat er trouwens ook een functie om eenvoudig te 'binnen' (weet het nederlandse woord zo snel niet) zoals bijvoorbeeld gebeurd in een histogram? Doe het nu handmatig, maar dat veroorzaakt vaak fouten.
Het is niet omdat jouw afschatting niet werkt dat het niet naar nul kan gaan.quote:Op vrijdag 2 mei 2008 22:22 schreef teletubbies het volgende:
kent iemand een leuke manier om int(xsin(x)/(1+x²), x=-oo,+oo) uit te rekenen?! Als je complexe analyse moet gebruiken dan kun je gebruik maken van Lemma van Jordan, door een functie f(z) =eizzsin(z)/(1+z²) en g te nemen: g(z)=zsin(z)/(1+z²). De bijbehorende krommen zijn:
y1 een parametrisatie van een lijnstuk [-R,R]
en
y2 een parametristatie van een cirkel met middelpunt 0 en straal R.
Dan ligt één pool van orde één binnen de halve cirkel. Het probleem is dat de abs( kring integraal van f(z) over y2 ) niet naar 0 gaat als R naar oneindig gaat, gezien
abs( kring integraal van f(z) over y2 )
<= length(y2)* max |f(z)| over y2
<=pi.R.max |f(z)| over y2
<=pi.R.R/(R2-1) en deze gaat niet naar 0 als R heel groot is.
Doe ik iets fout of moet er inderdaad een trucje gebruikt worden?
Je kunt zo'n kwadratische vorm als volgt maken. Neem het lichaam F_{q^2}, dit is een tweedimensionale vectorruimte over F_q. Daarop neem je de normvorm, in dit geval is dat x -> x^{q+1}. (okee, je kunt de vorm ook nog met een niet-kwadraat vermenigvuldigen, maar dat maakt voor de automorfismen natuurlijk niet uit).quote:Op vrijdag 2 mei 2008 16:07 schreef zuiderbuur het volgende:
Ik sukkel al een tijdje met dit probleem
Het betreft de projectieve orthogonale groepen
[ afbeelding ] en [ afbeelding ]
Dat zouden dihedrale groepen moeten zijn, respectievelijk van orde 2(q-1) en 2(q+1)
Ik beperk me nu voorlopig tot het laatste geval, met q ook oneven (ik schets het probleem eens volledig)
Beschouw een nietsinguliere kwadratische vorm Q op een vectorruimte van dimensie twee over het eindig veld van orde q. Veronderstel dat die van het elliptische type is (dus geen isotrope vectoren)
Toon aan dat de groep van lineaire transformaties die de kwadratische vorm bewaren, isomorf is met de dihedrale groep van orde 2(q+1). (Dus de isometriegroep van een regelmatige (q+1)-hoek)
Nu begin ik al ergens een zicht te krijgen op de situatie door een goeie permutatievoorstelling te zoeken.
Daarvoor neem ik alle vectoren v met Q(v)=1. Dat zullen er (q+1) zijn, die ik kan opsplitsen in (q+1)/2 paren (omdat als w zo'n vector is, -w er ook zo één is), wat overeen lijkt te komen met de overstaande hoekpunten in een regelmatige (q+1)-hoek.
De stelling van Witt lijkt me te garanderen dat de groep transitief werkt op die verzameling van q+1 vectoren, maar voor de rest lukt het me zelfs niet degelijk te bewijzen dat de totale orde gelijk is aan 2(q+1).
En dan nog die isomorfie... misschien aantonen dat het een semidirect product is?
Ik vind het wel een interessant probleem, maar ik vind het jammer dat ik er niet uit geraakAlle tips of hulp welkom.
Knap.quote:Op zaterdag 3 mei 2008 12:38 schreef thabit het volgende:
[..]
Je kunt zo'n kwadratische vorm als volgt maken. Neem het lichaam F_{q^2}, dit is een tweedimensionale vectorruimte over F_q. Daarop neem je de normvorm, in dit geval is dat x -> x^{q+1}. (okee, je kunt de vorm ook nog met een niet-kwadraat vermenigvuldigen, maar dat maakt voor de automorfismen natuurlijk niet uit).
Ik zie het idee wel, maar niet alle details. Is het zo triviaal dat dat de enige elementen zijn bijvoorbeeld die de normvorm invariant laten?quote:De dihedrale groep komt dan als volgt tevoorschijn: enerzijds heb je de groep van elementen van F_{q^2}^* van norm 1, die werkt als vermenigvuldiging. Dit is een cyclische groep van orde q+1. Verder heb je ook nog het lichaamsautomorfisme x->x^q van orde 2. De groep voortgebracht door deze twee zaken is de dihedrale groep van orde 2(q+1) die de normvorm invariant laat.
Goed, details moeten nog even uitgeschreven worden, maar als je het idee hebt is dat niet moeilijk meer.quote:Op zaterdag 3 mei 2008 13:59 schreef zuiderbuur het volgende:
[..]
Knap.![]()
[..]
Ik zie het idee wel, maar niet alle details. Is het zo triviaal dat dat de enige elementen zijn bijvoorbeeld die de normvorm invariant laten?
de functie heb ik inderdaad verkeerd getypt. Ik zal kijken naar een goede afschatting of de stelling 10x lezen.quote:Op zaterdag 3 mei 2008 12:11 schreef zuiderbuur het volgende:
[..]
Het is niet omdat jouw afschatting niet werkt dat het niet naar nul kan gaan.
Hier lees je een goed bewijs van Jordan en een formulering
Overigens denk ik dat jij gewoon de functie z/(1+z*z) en z*exp(z*I)/(1+z*z) hoort te gebruiken?![]()
Anders zit je met twee sinussen??
Je bekomt dat de kringintegraal (via de residustelling) altijd Pi* i /e
terwijl het gedeelte op de halve cirkel naar nul streeft
Het resultaat zou moeten zijn dat Pi/e jouw integraal is, terwijl je er gratis nog bij krijgt dat die van cos(x)*x/(1+x*x) gelijk is aan nul (maar dat is niet zo verwonderlijk want die functie is oneven)![]()
Bedanktquote:Op dinsdag 6 mei 2008 16:28 schreef Innocence het volgende:
s is een afstand of verplaatsing. Het is namelijk de versnelling a, tweemaal geintegreerd naar de tijd
De eenheid is dan inderdaad ook m, want [N*m] = [J]
Kijk eens naar de afleiding van de slingerformule zou ik zeggen. Er worden een hoop aannames gedaan, waarbij soms niet aan voldaan wordt. Ik zal er eentje verklappen, de rest kun je zelf wel vinden: er wordt uitgegaan van een puntmassa die slingert aan een massaloos touw van lengte l. Wanneer de massa van het touw niet meer verwaarloosbaar is tov de slingerende massa, dan komt hierdoor een grote afwijking in de formule.quote:Op woensdag 7 mei 2008 20:01 schreef Niconigger het volgende:
Hier een natuurkundige vraag: Hangt de trillingstijd af van de massa? Volgens het boek is de trillingstijd onafhankelijk van de massa en uitwijking, maar uit de meetresultaten blijkt dat de trillingstijd wel degelijk anders is. Zijn de meetresultaten verkeerd/onnauwkeurig of hangt de trillingstijd wél af van de massa?
Ja, die kracht is al bekend volgens mij.quote:Op donderdag 8 mei 2008 11:21 schreef pfaf het volgende:
De kracht op de veer is dan waarschijnlijk de massa van de massa aan de veer maal 9.8. Al is de situatie niet helemaal duidelijk.
Gaat dat aan de rand van de platen ook goed?quote:Op donderdag 8 mei 2008 15:01 schreef Niconigger het volgende:
In een homogeen elektrisch veld liggen alle veldlijnen even ver uit elkaar, veldsterkte is overal even groot en veldlijnen hebben overal dezelfde richting. En meestal ligt dat homogene elektrische veld tussen twee platen.
Ja, dat dacht ik ook maar ik vond het raar dat de twee apart staan in het Samengevat boekje.quote:Op donderdag 8 mei 2008 15:01 schreef Niconigger het volgende:
In een homogeen elektrisch veld liggen alle veldlijnen even ver uit elkaar, veldsterkte is overal even groot en veldlijnen hebben overal dezelfde richting. En meestal ligt dat homogene elektrische veld tussen twee platen.
Maak altijd een tekeningetje waarin de krachten in evenwicht zijn. Dan zie je wat er aan de hand is.quote:Op vrijdag 9 mei 2008 12:53 schreef Niconigger het volgende:bedankt, ik ga er gewoon van uit dat Fv=Fz dan komt het helemaal goed
Dat klopt. Had je ook de krachten getekend die de veren op elkaar uitoefenen? Dan kan je zien dat beide veren evenveel uitrekken.quote:Op vrijdag 9 mei 2008 13:00 schreef Niconigger het volgende:
heb ik gedaan, de massa van de veer is verwaarloosbaar tov van de massa die eraan hangt (0,250 kg) dus dan geldt Fz=Fv
Dikgedrukte klopt niet meer bij twee veren naast elkaar. Ik zie trouwens dat de uitwijking verschilt per veer. Hangt de massa wel recht?quote:Op vrijdag 9 mei 2008 13:04 schreef Niconigger het volgende:
@ Glowmouse: de massa van de veren is verwaarloosbaar, de massa die eraan hangt is (0,250 kg) --> Fz=2,4525 N, u is 7 en 10 cm.
Fv=Fz
Fz=C*u
C=Fz/u
C=2,4525/0,07 of 0,10 = 35 N/m of 24,5 N/m
of ben ik nu helemaal verkeerd bezig
Maak eens met Paint een schetsje van de situatie, want ik snap er niets van. Probeer ook alvast de krachten aan te geven.quote:Op vrijdag 9 mei 2008 13:10 schreef Niconigger het volgende:
Ja de opdracht was verschillende uitwijkingen te geven. Bij de twee veren naast elkaar hangt er 1 massa aan. Dus niet aan allebei de veren een aparte massa.
Dat vroegen we ons juist af: geldt voor de onderste veer niet Fv = 2*Fz, want die bovenste veer trekt ook nog eens met Fz aan de onderste veer.quote:Maar dan geldt Fv=Fz wel voor twee veren onder elkaar
Dat is naast elkaar en niet onder elkaar?quote:Op vrijdag 9 mei 2008 13:19 schreef Niconigger het volgende:
[img=http://img294.imageshack.us/img294/1030/massaveer1tp6.th.png]
quote:Op vrijdag 9 mei 2008 13:13 schreef GlowMouse het volgende:
Dat vroegen we ons juist af: geldt voor de onderste veer niet Fv = 2*Fz, want die bovenste veer trekt ook nog eens met Fz aan de onderste veer.
Ho wacht even, dit is geen consequente conclusie. De bovenste veer wordt ook ergens vastgehouden, en om te voorkomen dat de veer niet hard naar beneden valt, moet daar dus ook een kracht van m*g werken. Ook op de bovenste veer werkt dus een kracht van m*g naar boven, en van m*g naar beneden. De vraag was of je nu moet rekenen met een kracht van 2*m*g.quote:Op vrijdag 9 mei 2008 13:34 schreef Niconigger het volgende:
2 veren onder elkaar: Fv=2*Fz (veer 1 wordt uitgetrokken met m*g en veer 2 ook met m*g, en veer 2 rekt veer 1 ook uit --> Fv=2(m*g)
niet op.quote:1) C = F/u = F / (2*m*g/C) = C/2.
2) Fv=2*Fz
Deze twee beweringen spreken elkaar tegen.. Ik ga dan toch voor de tweede, omdat die het meest logisch lijkt in deze situatie (zie hierboven)
Ja.quote:Op vrijdag 9 mei 2008 13:54 schreef Niconigger het volgende:
dan gaat dus
[..]
niet op.
F=C*u
C=F/2u <-- dit geldt
quote:Is die kracht op de 2 veren dan niet even groot als Fz (massaveer is tenslotte verwaarloosbaar). Dus per veer Fz/2
klopt dan ga ik verder. Volgens mij, als ik alle hints e.d. lees klopt dat welquote:onder elkaar; C=F/2u
naast elkaar; C=0,5F/u
Je zegt twee keer hetzelfde.quote:Op vrijdag 9 mei 2008 14:05 schreef Niconigger het volgende:
dat tekeningetje is niet echt duidelijk (paint is niet mijn sterkste kant), maar als
[..]
klopt dan ga ik verder. Volgens mij, als ik alle hints e.d. lees klopt dat wel
F/(2u) = 0.5F/u. Delen door 2 is vermenigvuldigen met een half, dus daarom zeg je twee keer hetzelfde.quote:Op vrijdag 9 mei 2008 14:14 schreef Niconigger het volgende:
oooo shit, ik ben echt heul slecht hierin..
die onder elkaar weet ik zeker van dat die goed is
Jawel, als je het andersom doet geeft 'ie het voltage negatief aan en dat kan een analoge Voltmeter niet, dus krijg je geen uitslag.quote:Op vrijdag 9 mei 2008 17:56 schreef BK89 het volgende:
Ik zet nooit die apparaten in elkaar dus klein vraagje over natuurkunde:
http://downloads.kennisne(...)wo_na12_2003_2_c.pdf (blz 4, vraag 1)
Het maakt toch niets uit of je de + van de voltmeter in de linker of in de rechtergat van de motor stopt?
quote:polariteiten van de stroommeter en de spanningsmeter - 1 punt
Oke, bedanktquote:Op vrijdag 9 mei 2008 18:04 schreef Merkie het volgende:
[..]
Jawel, als je het andersom doet geeft 'ie het voltage negatief aan en dat kan een analoge Voltmeter niet, dus krijg je geen uitslag.
Staat ook bij:
[..]
Als je bedenkt dat F = ma en dus N = kg*m/s², en verder bedenkt dat de eenheid van m / C = seconden, dan kan je wel afleiden dat je C in N/m moet invullen en m in kg. Dit is echter niet zo eenvoudig dus je kan het beter onthoudenquote:Op zaterdag 10 mei 2008 00:59 schreef MeScott het volgende:
De formule voor de veerconstante is F= C × u. Dus C= F / u. Als ik F in kN neem en u in mm, dan komt daar een heel laag getal uit (immers, je hoeft maar heel weinig kracht te zetten om een veer een paar mm uit te rekken). Je zit dan dus met een erg kleine C. Ga je dit getal verder gebruiken, bijvoorbeeld in de formule
T = 2pi sqrt (m / C) (trillingstijd van een massa-veersysteem berekenen)
dan heeft een kleine C dus invloed op de trillingstijd, die wordt daardoor groter. Voor in de tweede formule maakt het dus absoluut uit of C groot of klein is, en dat is weer afhankelijk van wat voor eenheden je hebt gebruikt om de C te berekenen. Mijn vraag was dus of je altijd goed zit (dus ook in eventuele 'vervolg'formules) als je de SI-standaardeenheden gebruikt. (Als ik binnenkort nog een vraag tegenkom waarbij ik zit te twijfelen tussen eenheden zal ik hier nog wel een keer posten, dan kan ik een concreet voorbeeld geven en misschien dat het dan duidelijker wordt.)
gek_kuikentje heeft mijn vraag eigenlijk beantwoord, alleen ik heb nog wel een wedervraag: gaat dat voor élke formule goed ? Is er geen enkele uitzondering waarbij je in plaats van met grammen kilogrammen moet gebruiken tijdens het berekenen o.i.d. ?
[insert mand waar Merkie door valt]quote:Op zaterdag 10 mei 2008 01:11 schreef Merkie het volgende:
Als je bedenkt dat F = ma en dus N = kg*m/s², en verder bedenkt dat de eenheid van m / C = seconden
Hmm, zoals ik het altijd gezien heb :quote:Op zaterdag 10 mei 2008 10:18 schreef Borizzz het volgende:
Door vijf punten kan een kegelsnede worden vastgelegd.
Maar hoe constueer je dan die kegelsnede?
Ik weet dat het bijv. om twee projectieve waaiers gaat met 2 toppen (2 toppen en 3 punten maakt samen de vijf punten voor een kegelsnede). Maar ik zie de constructiestappen niet.
Ik vrees dat ik je vraag eigenlijk nog niet goed genoeg snap.quote:Op zaterdag 10 mei 2008 11:41 schreef Borizzz het volgende:
Bedankt voor het antwoord
met een waaier bedoel ik een bundel lijnen door een punt. Dit punt heet dan de top.
Als je twee waaiers (met elk drie lijnen door de top) hebt die je projectief verwant maakt, dan leg je hiermee 5 punten vast.
De vraag is nu hoe je vanuit dit gegeven een kegelsnede kunt vinden.
Wel, in het algemeen : als je twee waaiers van rechten hebt met verschillende toppen r en s, en er is een projectieve verwantschap tussen beide rechtenverzamelingen, dan bekom je een kegelsnede door elke rechte door r te snijden met de verwante rechte door s. Die snijpunten vormen samen de kegelsnede.quote:Op zaterdag 10 mei 2008 11:55 schreef Borizzz het volgende:
Je kunt vertrekken vanaf de 5 vastgelegde punten.
Volgens mij krijg je:quote:Op zaterdag 10 mei 2008 17:44 schreef GlowMouse het volgende:
Lijkt me een slordigheidje.
quote:Op zaterdag 10 mei 2008 18:18 schreef Iblis het volgende:
[..]
Volgens mij krijg je:
238/94Pu -> 4/2He + 234/92U
234/92U -> 4/2He + gamma + 230/90Th
Dus, inderdaad, slordig.
Ik zou zeggen dat dat niet gevraagd wordt, of dat er aangegeven wordt, zoals bij die Plutonium-isotoop vraag waar het naartoe gaat. Als je dan Plutonium opzoekt, dan zie je dat dit twee protonen meer heeft dan Uranium. Dus ligt het voor de hand dat er twee neutronen vervallen, zoals jij ook hebt gedaan.quote:Op zaterdag 10 mei 2008 20:04 schreef BK89 het volgende:
[..]
Oke, bedankt, raakte al helemaal in de war
Maar hoe zit het dan als ik een vraag krijg die niet in BINAS staat, is het mogelijk om het dan ergens van af te leiden (de soort straling en de massa) of kan dat gewoon niet gevraagd worden op het examen?
Oke, bedankt voor je hulp, scheelt me weer een fietsrit naar schoolquote:Op zaterdag 10 mei 2008 20:11 schreef Iblis het volgende:
[..]
Ik zou zeggen dat dat niet gevraagd wordt, of dat er aangegeven wordt, zoals bij die Plutonium-isotoop vraag waar het naartoe gaat. Als je dan Plutonium opzoekt, dan zie je dat dit twee protonen meer heeft dan Uranium. Dus ligt het voor de hand dat er twee neutronen vervallen, zoals jij ook hebt gedaan.
Als je alfa-verval zou hebben zou je 4/2He krijgen en dat zou erg moeilijk naar Plutonium gaan. Dus dan is het een beetje logisch nadenken. Het is een vraag of je doorhebt wat er gebeurt.
Dan is tie van jou toch wat logischerquote:Op zondag 11 mei 2008 17:55 schreef GlowMouse het volgende:
Ik zie niet hoe ze eraan komen, maar het klopt wel. Ik zou hem zo doen:
De wijzer zit op 1.7/6de deel van het totaal. Bij de grote wijzer zou dat overeenkomen met 1.7/6 * 18 = 5.1
En nu zie ik hoe zij hem doen: zij kijken op welk deel hij zit van tussen de -3 en de -1. De -1 op de ene plaat komt overeen met de 6 op de andere plaat, en zo komen ze alsnog op het juiste antwoord.
Ik denk dat QR doorsnede b en PR doorsnede a respectievelijk de punten op b en a van je kegelsnede zullen zijn? Of zijn er nog?quote:Op zondag 11 mei 2008 19:53 schreef Borizzz het volgende:
Voor de mensen die thuis zijn in de Projectieve meetkunde:
Ik kom niet uit het volgende vraagstuk:
Gegeven zijn twee lijnen (zeg a en b) en drie punten (P, Q en R) niet op a of b.
Van driehoek ABC is gegeven dat A de lijn a en B de lijn b doorloopt, zó dat AB steeds door R gaat.
Het punt C wordt gevonden als snijpunt van AQ en BP.
- Toon aan dat C een kegelsnede beschrijft die door P en Q gaat
- Bepaal de snijpunten van die kegelsnede met a en b.
Ik geloof dat ik de analysetekening al niet goed heb...
Het probleem is dat jij het met coordinaten uitrekent. Ik moet het zuiver meetkundig aanpakken.quote:Op zondag 11 mei 2008 21:58 schreef zuiderbuur het volgende:
[..]
Ik denk dat QR doorsnede b en PR doorsnede a respectievelijk de punten op b en a van je kegelsnede zullen zijn? Of zijn er nog?![]()
Ik weet het niet hoor, het ziet er niet eenvoudig uit. Denk je dat dit analytisch zal moeten?
Wijziging: Natuurlijk zijn er nog : namelijk het snijpunt van a en b![]()
Ik heb het even uitgerekend. Geef aan P Q en R respectievelijk de coordinante (1,0,0) (0,1,0- en (0,0,1)
rechte a kan je dan nog laten zijn : x+y=1 (of x+y=z als je liever niet affien werkt)
rechte b is dan algemeen u*x+v*y+w*z=0
Als affiene parametervoorstelling voor a vind ik (t,1-t,1), dan is b = (t*w,(1-t)*w,(t-1)*v-u*t)
Uteindelijk vind ik dan het affiene punt ( t, w*(t-1) /((u-v)*t+v ) ) als punt op de kegelsnede
dat klopt, dit is een hyperbool
Ik kan me misrekend hebben hoor, maar alles lijkt toch redelijk te klopen als ik die snijpunten ga bekijken.![]()
Bij het compileren zegt-ie in het begin "entering extended mode", en als PDF laat-ie dan een eerder opgeslagen bestand zien ( En 0 errors, 0 bad boxes, 0 warnings en 0 pagesquote:\documentclass{beamer}
\usepackage{beamerthemesplit}
\usepackage[english]{babel}
\usepackage[framesassubsections]{beamerprosper}
.....
*meldt zich met hetzelfde probleemquote:Op maandag 12 mei 2008 10:31 schreef Haushofer het volgende:
Een LaTeX-vraagje: Ben nu bezig om een presentatie met Latex te maken, met de beamer-package:
[..]
Bij het compileren zegt-ie in het begin "entering extended mode", en als PDF laat-ie dan een eerder opgeslagen bestand zien ( En 0 errors, 0 bad boxes, 0 warnings en 0 pages) . Wat kan hiervan de oorzaak zijn? Ik heb m'n output profiles goed gedefinieerd, dus het kan niet aan een verkeerde link naar Acrobat Reader liggen oid, lijkt me
Maar wat daaronder staat lukt me niet :quote:Inside whatever texmf directory you have chosen, create the sub-sub-sub-directories texmf/tex/latex/beamer and texmf/tex/latex/pgf and texmf/tex/latex/xcolor place all files in these directories.
quote:Finally, you need to rebuild TeX's filename database. This done by running the command texhash or mktexlsr (they are the same). In MikTeX, there is a menu option to do this.
krijg ik ook die "entering extended mode"quote:\documentclass{beamer}
\usepackage{beamerthemesplit}
\title{Example Presentation Created with the Beamer Package}
\author{Till Tantau}
\date{\today}
\begin{document}
\frame{\titlepage}
\section[Outline]{}
\frame{\tableofcontents}
\section{Introduction}
\subsection{Overview of the Beamer Class}
\frame
{
\frametitle{Features of the Beamer Class}
\begin{itemize}
\item<1-> Normal LaTeX class.
\item<2-> Easy overlays.
\item<3-> No external programs needed.
\end{itemize}
}
\end{document}
Neen, maar het interesseert me wel erg.quote:Op maandag 12 mei 2008 10:02 schreef Borizzz het volgende:
[..]
Het probleem is dat jij het met coordinaten uitrekent. Ik moet het zuiver meetkundig aanpakken.
Zie je ook een meetkundige uitwerking?
De oplossing van welk probleem?quote:Op maandag 12 mei 2008 23:09 schreef thabit het volgende:
De oplossing lijkt mij stronteenvoudig:
[ afbeelding ]
Heb jij nog nooit zo'n überonduidelijke presentatie aan een bord gezien danquote:Op dinsdag 13 mei 2008 00:11 schreef thabit het volgende:
[..]
De fundamentele fout door een beamerpresentatie te willen geven.
Heb jij nog nooit zo'n überonduidelijke beamer presentatie gezien danquote:Op dinsdag 13 mei 2008 00:19 schreef zuiderbuur het volgende:
[..]
Heb jij nog nooit zo'n überonduidelijke presentatie aan een bord gezien dan(drie woorden hier, een verzameling daar en een naam van een persoon ernaast, en de rest vertellen we wel mondeling?)
Als je niet al teveel formules gebruikt, dan kun je prima een beamerpresentatie geven, en als het nodig is kun je toelichting op het bord geven. Daar is niks mis mee, lijkt me. Ik vind het in ieder geval goed te doen. Beter iig dan een hele presentatie op het bord doen.quote:Op maandag 12 mei 2008 23:09 schreef thabit het volgende:
De oplossing lijkt mij stronteenvoudig:
[ afbeelding ]
Dank je voor de link, dat topic was me nog niet opgevallenquote:Op maandag 12 mei 2008 20:34 schreef GlowMouse het volgende:
Probeer voor Tex-problemen ook dit topic eens, daar lezen weer andere mensen mee.
Bij 1 als a=2 dan is de determinant 0, maar is het stelsel toch oplosbaar. Als det(A)=0 dan is het stelsel Ax=b niet oplosbaar voor elke b, maar voor sommige b kan het best oplosbaar zijn. Eenvoudigste voorbeeld is dan b=0, want dan heeft Ax=b oneindig veel oplossingen (waaronder x=0).quote:Op woensdag 14 mei 2008 10:09 schreef pfaf het volgende:
Matrices maken van de vergelijkingen en dan a en b zo kiezen dat de determinant 0 is.
Bedankt voor je advies, maar ik ben opzich al vanaf vanmorgen 09:00 uur bezig geweest met deze opgaven, en snap gewoon niet hoe alles werkt. Kan toch?quote:Op woensdag 14 mei 2008 13:38 schreef thabit het volgende:
Ki08, ik kan je sterk aanraden een heet bad te nemen. Dan komt het luie zweet er tenminste uit. Ik heb namelijk sterk de indruk dat je niet ook maar een seconde over de opgaves hebt nagedacht die je hier neerplempt.
Maar hij heeft wel gelijk: het zijn steeds dezelfde stapjes die je hier moet doen, er komt nog weinig nadenken bij kijken. Als je een voorbeeldje bestudeert, zou je het zo zelf moeten kunnen.quote:Op woensdag 14 mei 2008 14:01 schreef Ki08 het volgende:
[..]
Bedankt voor je advies, maar ik ben opzich al vanaf vanmorgen 09:00 uur bezig geweest met deze opgaven, en snap gewoon niet hoe alles werkt. Kan toch?
Ok. Gelieve juist te letten op het door mij aangehaalde probleem. Bepaalde deelproblemen kunnen ongetwijfeld performanter opgelost worden dan ik voorlopig deed,maar goed.quote:Op woensdag 14 mei 2008 23:13 schreef Merkie het volgende:
Post je code eens? Ik doe altijd "clc; clear all;" bovenaan zetten om zeker te weten dat Matlab een nieuwe run doet.
Ja, weet ik best. Ik heb het programmeren dan nog niet helemaal beet, en concentreer me daarom even op de uitkomst ipv op het aantal loopjes. Zou toch in principe geen verschil mogen opleveren?quote:
population stelt een 3D matrix voor. Het bevat 75 mogelijke oplossing. Elke oplossing bestaat uit 7 punten van 2 dimensies, en die moeten allen opgeslaan worden. Die dimensies zijn niet zo vreemd in Genetic Algorithms lijkt me.quote:Op donderdag 15 mei 2008 00:00 schreef Merkie het volgende:
Ik ben ook niet zo'n ster in Matlab, maar hoe complexer je code hoe lastiger het is fouten eruit te herhalen. Ik raad aan om wat efficiëntere code te maken. Bijv. population is een dubbele matrix met 7x10 kolommen ofzo? Wat moet population voorstellen?
Hé, dankjewelquote:Op donderdag 15 mei 2008 08:20 schreef GlowMouse het volgende:
Voeg onder "while (test>compare)" eens de regel "[test compare]" toe. Je ziet dat het voor kan komen dat test nooit kleiner wordt dan compare. Ik ga de logica achter je code niet begrijpen om te zien hoe dat komt, maar ik denk zomaar dat het niets te maken heeft met voor de eerste of tweede keer draaien.
Dat ligt er aan of de straal de optisch dichtere stof in of uitgaat.quote:Op zaterdag 17 mei 2008 15:06 schreef BK89 het volgende:
Is de brekingswet van Snellius:
1/n=sin/sin (r) (Examenopgave)
of
n=sin/sin (r) (BINAS)
Of moet je dat ergens in de tekening van afleiden oid?
Als E=V en f=0, is dit niet waar.quote:Op zaterdag 17 mei 2008 21:23 schreef zuiderbuur het volgende:
Dit is nou waar ik echt pisnijdig van kan worden. Die "kleine" stapjes in een boek die je maar zelf moet doen maar waar je uiteindelijk niet in slaagt. De vorige keer heb ik het opgegeven, nu vraag ik het aan jullie![]()
:
Laat V een vectorruimte zijn waarop een hermitische vorm f werkt. Laat E een deelruimte zijn van f die totaal isotroop is ten opzichte van f (lees : waarop de restrictie van f gewoon triviaal is)
Toon aan dat je elke lineaire transformatie van E kan uitbreiden tot een isometrie van f op de hele ruimte V, die determinant 1 heeft.
Die laatste woordjes zijn het dus. Je hebt de stelling van Witt voor zulke uitbreidingen, maar is het zo triviaal om in te zien dat er altijd ook eentje kan gemaakt worden met determinant 1?
quote:
Laat L een veld zijn met involutief automorfisme theta. Laat K het fixveld zijn van theta.quote:Op zaterdag 17 mei 2008 21:39 schreef thabit het volgende:
Wat bedoel je hier uberhaupt met een hermitische vorm? In mijn hoofd is een hermitische vorm een positief definiete sesquilineaire vorm. Zulke dingen laten helemaal geen niet-triviale isotrope deelruimten toe.
Bedanktquote:Op zaterdag 17 mei 2008 15:30 schreef freiss het volgende:
[..]
Dat ligt er aan of de straal de optisch dichtere stof in of uitgaat.
sin/sin(r) = n geldt volgens mij als de straal de stof ingaat.
Ik kom er niet direct uit, maar ik zou weleens willen zien hoe het in het volgende voorbeeld werkt: neemquote:Op zaterdag 17 mei 2008 21:44 schreef zuiderbuur het volgende:
[..]
Laat L een veld zijn met involutief automorfisme theta. Laat K het fixveld zijn van theta.
Laat V een vectorruimte zijn over L.
f is een hermitische vorm op V, als het een afbeelding is van V x V naar L, zodanig dat
f(v1+v2,w)=f(v1,w)+f(v2,w)
f(lambda*v,w)=lambda*f(v,w)
f(v,w) = f(w,v)^theta
Ik heb het dus zeker niet over unitaire ruimtes of zo. Zelfs over C kan je gemakkelijk hermitische vormen aanmaken die isotrope punten bevatten.
In de context waarin ik wil werken is het trouwens over galoisvelden, waar helemaal geen notie bestaat van positief definitief (alle nietsinguliere hermitische vormen zijn dan isometrisch trouwens)
Inderdaad, dat lijkt niet werken.quote:Op zondag 18 mei 2008 13:43 schreef thabit het volgende:
[..]
Ik kom er niet direct uit, maar ik zou weleens willen zien hoe het in het volgende voorbeeld werkt: neem
V=C^2, f((x1,x2),(y1,y2)) = x1(y2)^- + x2(y1)^-
(^- betekent hier complex geconjugeerde)
dus de vorm met matrix
0 1
1 0
Neem E={(x,0)}, lijkt me nogal isotroop, en als isometrie op E neem je vermenigvuldiging met i. Hoe zou je deze kunnen voortzetten tot een isometrie op V met determinant 1?
Ok, ik heb het even opgezocht in het boek waarin ik vast zit:quote:Op zondag 18 mei 2008 13:56 schreef zuiderbuur het volgende:
[..]
Inderdaad, dat lijkt niet werken.![]()
Wat nu? Wil ik anders gewoon zeggen wat ik eigenlijk wil doen.
Ik wil bijvoorbeeld begrijpen waarom SU(3,q) transitief werkt op de verzameling van isotrope vectoren, en dat soort zaken.
Ik ga morgen nog eens goed kijken naar de formulering van die uitspraak![]()
De uit te breiden afbeelding moest dus zelf al determinant 1 hebben.quote:let E be a totally isotropic subspace of the unitary geometry V
show that every element of SL(E) extends to an element of SU(V)
Then show that SU(V) is transitive on the flags of totally isotropic subspaces of a given type
ABC-regel...quote:Op dinsdag 20 mei 2008 11:38 schreef Rammstino het volgende:
Wiskunde: hoe los je: x^2+x-5=0 exact op?
Klopt! Dankje.quote:Op woensdag 21 mei 2008 15:33 schreef GlowMouse het volgende:
Je vult de kolommen van c een voor een. De tweede rij moet dan wel dezelfde dimensie hebben als de eerste rij. Wat je kunt doen, is extra kolommen toevoegen:
c(:,m+1)=[ inv(A{m+1}' *A{m+1})*A{m+1}'*a(:,m+1); ones(m,1) ]
Excusquote:Op woensdag 21 mei 2008 19:57 schreef GlowMouse het volgende:
Het is niet te begrijpen wat je nou bedoelt omdat je geen haakjes gebruikt.
[ afbeelding ]
klopt namelijk niet.
quote:Op woensdag 21 mei 2008 20:35 schreef GlowMouse het volgende:
Hoe gaat dat precies, die stap van [ afbeelding ]?
Je moet bedenken dat [ afbeelding ] hetzelfde is als 3*3*3*...*3, en dat a keer.
wiki: De weerstandswaarde van een LDR wordt kleiner, naarmate de LDR sterker wordt belicht. Hierdoor kan de waarde van de weerstand sterk variëren. Het gebruikte materiaal is meestal cadmiumsulfide, de donkerweerstand bedraagt 1-10 MΩ terwijl de lichtweerstand (afhankelijk van het type en de hoeveelheid licht) 75-300 Ω is.quote:Op donderdag 22 mei 2008 18:41 schreef Merkie het volgende:
Hoe moet de spanning veranderen? Een LDR is gewoon een weerstand, dus de spanning die er overheen staat als het de enige weerstand is lijkt me altijd gelijk (je meet tenslotte parallel). Heb je een meetopstelling?
Waarom denk jij dat die hoek ook het tegenstelde mag zijn? Zowel de cosinus als de sinus moeten toch gelijk zijn opdat P en Q samenvallen?quote:Op zaterdag 24 mei 2008 12:47 schreef BK89 het volgende:
http://downloads.kennisne(...)wo_wb12_2005_2_o.pdf
Bij 9. Waarom wordt er niet gebruikt gemaakt van
11/10 t=-(t+2/3 pi)+k2pi ?
Dat levert toch een kortere tijd op dan die 11/10 t=t+2/3 pi+k2pi ?
Bij 11/10 t=t+2/3 pi+k2pi => t=20/3 pi
Bij 11/10 t=-(t+2/3 pi)+k2pi => t=-20/63 pi + 20/21 pi
Of heb ik een rekenfout/denkfout gemaakt?
Ja, de weerstand verandert, maar dan verandert je gemeten voltage toch niet.quote:Op donderdag 22 mei 2008 19:42 schreef hello_moto1992 het volgende:
[..]
wiki: De weerstandswaarde van een LDR wordt kleiner, naarmate de LDR sterker wordt belicht. Hierdoor kan de waarde van de weerstand sterk variëren. Het gebruikte materiaal is meestal cadmiumsulfide, de donkerweerstand bedraagt 1-10 MΩ terwijl de lichtweerstand (afhankelijk van het type en de hoeveelheid licht) 75-300 Ω is.
Oh, oke, ik zie het nu, bedanktquote:Op zaterdag 24 mei 2008 12:57 schreef zuiderbuur het volgende:
[..]
Waarom denk jij dat die hoek ook het tegenstelde mag zijn? Zowel de cosinus als de sinus moeten toch gelijk zijn opdat P en Q samenvallen?
Er wordt al een hint gegeven in de tekst, namelijk dat alle zwaarte-energie wordt omgezet in bewegingsenergie, dus Ez=Ekinquote:Op zaterdag 24 mei 2008 16:03 schreef JOO het volgende:
Een van de deelnemers was Dorus. Dorus stapte van de driemeterplank. Deze plank bevindt zich precies 3 meter boven het wateroppervlak. Dorus heeft een massa van 72 kg. Bereken hoe groot de snelheid is waarmee Dorus met zijn voet het water raakt. Ga ervan uit dat alle zwaarte-energie wordt omgezet in
bewegingsenergie.
het antwoord is v = 7,7 m/s
maar ik snap niet hoe je op dit getal moet komen.
Snap eerlijk gezegd niet hoe je daar niet uit eerst zelf uit kan komen...quote:Op zaterdag 24 mei 2008 16:28 schreef JOO het volgende:
Dankje
Ik zou niet weten hoe je zo'n vraag kan krijgen zonder een stukje achtergrondinformatie gehad te hebben. "Er niet uitkomen" lijkt me onmogelijk bij deze vraag, dat je niet weet hoe je het aan moet pakken kan ik wel begrijpen.quote:Op zaterdag 24 mei 2008 16:58 schreef harrypiel het volgende:
jij wilt beweren dat jij gelijk op het elitaire-corpsballen-fysica-niveau bent begonnen?
neemt niet weg dat E = mhg = 0,5mv2 inkloppen doodsimpel is voor iedereen die al dat kleine beetje beta gehad heeft.
Ik vrees dat dat gewoon onmogelijk is. Voor het integreren van rationale functies van min oneindig naar plus oneindig (dan mag je noemer geen reële nulpunten hebben natuurlijk!) kan je werken met een halve cirkel met als diameter een steeds groter wordend deel van de reële as, en met als middelpunt nul. De berekening gaat dan via het residu van de nulpunten van de noemer met een positief imaginair deel.quote:Op zondag 25 mei 2008 11:54 schreef teletubbies het volgende:
hoe zou men de integraal:
int(1/(x^3+x+1),x=0..infinity) uitrekenen zonder dat je expliciet de nulpunten uitrekent?
Zou dat kunnen door middel van afschatten? of een of ander complexe analyse techniek te gebruiken?
x^3+x+1 heeft een negatief discriminant, er is 1 reeel nulpunt en die is negatief. Dus de kust is veilig voor integratie. De vraag is nu welke contour ik hoor te gebruiken of welke afschatting.
alvast bedankt!
Ben toch ook wel benieuwd, ik wil het antwoord ook wel weten.quote:Op maandag 26 mei 2008 17:50 schreef GlowMouse het volgende:
Het gaat uiteraard niet om berekenen maar om schatten. Ervanuitgaande dat je de niet-zuivere schatter gebruikt die gelijk is aan [ afbeelding ], kun je voor iedere groep de [ afbeelding ] bepalen. Daarna bepaal je via gewogen gemiddeldes [ afbeelding ] en [ afbeelding ] voor alle regio's samen, vul weer in, en klaar
Het is en blijft toch een steekproef of niet?quote:Op maandag 26 mei 2008 19:42 schreef zuiderbuur het volgende:
Waarom delen door aantal groepen -1 ? We zijn hier toch niet aan het schatten of zo?
Gek,ik blijf 11.27 vinden..
De variantie is een eigenschap van een kansverdeling, die je met een steekproef schat. Dat er mensen zijn die binnen een steekproef over variantie spreken maakt dat nog niet juist.quote:Op maandag 26 mei 2008 20:59 schreef zuiderbuur het volgende:
Nu keer ik gewoon met dezelfde formule terug, en ik vind als variantie van de gehele groep 9.505.
Dit is een exact antwoord, ik schat helemaal niets. Mijn enige uitspraak is dat wie voor de drie regio's van Nederland alle gegevens optelt, deze variantie zal vinden.
Ik denk dat je hier weer gelijk hebt, maar ik vrees wel dat die verkeerde gewoonte zelfs door docenten aangeleerd wordt.quote:Op maandag 26 mei 2008 21:10 schreef GlowMouse het volgende:
[..]
De variantie is een eigenschap van een kansverdeling, die je met een steekproef schat. Dat er mensen zijn die binnen een steekproef over variantie spreken maakt dat nog niet juist.
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |