abonnement Unibet Coolblue Bitvavo
pi_93949140
Vorige delen

Post hier weer al je vragen, passies, trauma's en andere dingen die je uit je slaap houden met betrekking tot de wiskunde.

Van MBO tot WO, hier is het topic waar je een antwoord kunt krijgen op je vragen. Vragen over stochastiek in het algemeen en stochastische processen & analyse in het bijzonder worden door sommigen extra op prijs gesteld!

Links:

Opmaak:
http://betahw.mine.nu/index.php: site van GlowMouse om formules te kunnen gebruiken in je posts (op basis van Latexcode wordt een plaatje gegenereerd dat je vervolgens via het aangegeven linkje kunt opnemen).
Een uitleg over LaTeX-code kun je hier vinden, en je kunt deze site gebruiken om een hele post met verschillende stukken Latex-code erin ineens te laten parsen door betahw.mine.nu.

Wiskundig inhoudelijk:
http://integrals.wolfram.com/index.jsp: site van Wolfram, makers van Mathematica, om online symbolische integratie uit te voeren.
http://mathworld.wolfram.com/: site van Wolfram met een berg korte wiki-achtige artikelen over wiskundige concepten en onderwerpen, incl. search.
http://functions.wolfram.com/: site van Wolfram met een berg identiteiten, gerangschikt per soort functie.
http://scholar.google.com/: Google scholar, zoek naar trefwoorden specifiek in (wetenschappelijke) artikelen. Vaak worden er meerdere versies van hetzelfde artikel gevonden, waarvan één of meer van de website van een journaal en (dus) niet vrij toegankelijk, maar vaak ook een versie die wel vrij van de website van de auteur te halen is.
http://www.wolframalpha.com Meest geavanceerde rekenmachine van het internet. Handig voor het berekenen van integralen, afgeleides, etc...

OP

[ Bericht 2% gewijzigd door GlowMouse op 11-03-2011 11:27:46 ]
pi_93949221
Hoe kopieer ik nou me eigen vraag uit het vorige topic, zodat de plaatjes het ook doen ?

Ik doe het wel opnieuw:

mimetex.cgi?%5Csqrt%5B3%5D%7B14%2F75%7D%20%3D%20%5Csqrt%5B3%5D%7B2%5Ccdot7%2F3%5Ccdot5%5E2%7D%20%3D%20%5Csqrt%5B3%5D%7B2%5Ccdot7%5Ccdot3%5E2%5Ccdot5%2F3%5E3%5Ccdot5%5E3

antwoord ? mimetex.cgi?15%5Csqrt%5B3%5D630 of mimetex.cgi?%5Cfrac1%7B15%7D%5Csqrt%5B3%5D%7B630%7D en waarom ? het lijkt me dat je alles wat tot de 3e macht (in dit geval 3x5) buiten de wortel moet halen, dus dat het het eerste antwoord is.

[ Bericht 83% gewijzigd door Mind_State op 11-03-2011 11:30:26 ]
  vrijdag 11 maart 2011 @ 11:25:10 #3
75592 GlowMouse
l'état, c'est moi
pi_93949280
1
2
3
[IMG]http://forum.fok.nl/lib/mimetex.cgi?%5Csqrt%5B3%5D%7B14%2F75%7D%20%3D%20%5Csqrt%5B3%5D%7B2%5Ccdot7%2F3%5Ccdot5%5E2%7D%20%3D%20%5Csqrt%5B3%5D%7B2%5Ccdot7%5Ccdot3%5E2%5Ccdot5%2F3%5E3%5Ccdot5%5E3[/IMG]

De vraag is: Is het uiteindelijke antwoord nu [IMG]http://forum.fok.nl/lib/mimetex.cgi?15%5Csqrt%5B3%5D630[/IMG] of [IMG]http://forum.fok.nl/lib/mimetex.cgi?%5Cfrac1%7B15%7D%5Csqrt%5B3%5D%7B630%7D[/IMG] en waarom ? het lijkt me toch dat je alles wat je tot de 3e macht heb.. in dit geval dus 3x5 buiten de wortel haalt en het antwoord dus de eerste is.. maar volgens het boek is het de tweede..
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_93949755
quote:
1s.gif Op vrijdag 11 maart 2011 11:08 schreef Mind_State het volgende:
[ afbeelding ]

De vraag is: Is het uiteindelijke antwoord nu [ afbeelding ] of [ afbeelding ] en waarom ? het lijkt me toch dat je alles wat je tot de 3e macht heb.. in dit geval dus 3x5 buiten de wortel haalt en het antwoord dus de eerste is.. maar volgens het boek is het de tweede..
Binnen de wortel staat het in de noemer, dus ook buiten de wortel in de noemer.
pi_93951645
oke.. en stel nou dat ik in de teller ook die 3 tot de 3e zou hebben gehad.. was het antwoord dan mimetex.cgi?%5Cfrac3%7B15%7D%5Csqrt%5B3%5D%7B70%7D geweest ? dan begrijp ik hem namelijk..
pi_93951724
quote:
1s.gif Op vrijdag 11 maart 2011 12:34 schreef Mind_State het volgende:
oke.. en stel nou dat ik in de teller ook die 3 tot de 3e zou hebben gehad.. was het antwoord dan [ afbeelding ] geweest ? dan begrijp ik hem namelijk..
Juist. Al kun je 3/15 nog wel vereenvoudigen tot 1/5.
pi_93951877
Thnx, kan ik weer verder.. ben blij als ik het onderdeel getallen afgerond heb en door kan met algebra
pi_93957382
Hoe bepaal je handig zonder rekenmachine de rest van 74^74 * 87^87 na deling door 7?
  vrijdag 11 maart 2011 @ 14:57:07 #9
75592 GlowMouse
l'état, c'est moi
pi_93958138
Gebruik a*b (mod c) = (a (mod c)) * (b (mod c)). Dan kom je bij die eerste op 2^148 mod 7 en dat is makkelijk

[ Bericht 0% gewijzigd door GlowMouse op 11-03-2011 15:28:08 ]
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_93964789
Ik snap niet echt wat je bedoelt...

Je doet [ 74^74 * 87^87 ] (mod 7) = [74^74 (mod 7)] *[ 87^87 (mod 7)]?
  vrijdag 11 maart 2011 @ 17:27:31 #11
75592 GlowMouse
l'état, c'est moi
pi_93964856
Dat is stap 1. Daarna kun je bij 74^74 mod 7 weer hetzelfde doen.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_93965799
Ah oke...

[ 74^74 * 87^87 ] (mod 7) = [74^74 (mod 7)] *[ 87^87 (mod 7)]
= [4 (mod 7)]^74 * [3 (mod 7)]^87
= [2 (mod 7)]^148 * [3 (mod 7)]^87
= [2^148 * 3^87] (mod 7)

Dus nu weten we dat 74^74 * 87^87 dezelfde rest heeft als 2^148 * 3^87...
  vrijdag 11 maart 2011 @ 17:55:33 #13
75592 GlowMouse
l'état, c'est moi
pi_93965912
2 mod 7 = 2
4 mod 7 = 4
8 mod 7 = 1
16 mod 7 = 2
32 mod 7 = 4
64 mod 7 = 1, etc.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_93966047
Aha, op die manier. Dit was een opgave uit een 1930 kweekschool rekentoets, maar ik heb eigenlijk amper geleerd modulair te rekenen 8)7 . Schande!
pi_94051374
quote:
Given the matrix
C = ((1,2),(3,4))

compute: (C^2)-(5C)-(2I)
dan kom ik uit op ((0,0),(0,0))
klopt dit wel?
pi_94051541
quote:
2s.gif Op zondag 13 maart 2011 16:39 schreef .aeon het volgende:

[..]

dan kom ik uit op ((0,0),(0,0))
klopt dit wel?
Klopt
pi_94051665
Bedankt, snap ik het blijkbaar toch :P
pi_94059721
Nog een vraag mbt matrices, de vergelijking:
(100a+100b,b) = a'(-1,2)+b'(1,2)
geeft als oplossing:
a' = -(200a+199b)/4
b' = (200a+201b)/4


edit: laat maar, opgelost

[ Bericht 9% gewijzigd door .aeon op 13-03-2011 23:44:35 ]
pi_94128314
Jaja daar ben ik weer eens,
ik probeer een formule te maken met mijn vrij verloren kennis aan geometrie.
Plaatje hieronder laat de situatie zien.


Ter verduidelijking: D en E liggen op de lijn L2.

Ik heb het al zitten afleiden met een toy probleem door de euclidean distance vast te stellen en vervolgens dan de coordinaten te vinden, maar dat gaat nergens naar.

De bedoeling is dat het direct beide coordinaties kan berekenen aan de hand van A en B, nou ben ik wel zover dat ik L1 en L2 kan bepalen, maar ik kom niet verder met hoe ik D en E bepaal aan de hand van deze twee lijnen. Ik probeer er namelijk een algoritme van te maken.
  dinsdag 15 maart 2011 @ 10:06:29 #20
75592 GlowMouse
l'état, c'est moi
pi_94133125
Wat is gegeven?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94134563
Edit: laat maar, probleem al opgelost.

[ Bericht 49% gewijzigd door Warren op 15-03-2011 11:07:12 ]
pi_94136624
quote:
1s.gif Op dinsdag 15 maart 2011 10:06 schreef GlowMouse het volgende:
Wat is gegeven?
Je weet A, B en C. Je hebt A en B nodig om te bepalen hoe de andere lijn die door c gaat op de lijn AB moet staan, namelijk loodrecht (90 graden). C heb je vervolgens nodig om D en E te kunnen bepalen.

De bedoeling hiervan is een path planning van A naar B, dat een radius om C omzeilt. Daarvoor wil ik 2 punten D en E om ze vervolgens te testen op bereikbaarheid.
  dinsdag 15 maart 2011 @ 12:32:03 #23
120139 freiss
Hertog Jan :9~
pi_94137884
quote:
1s.gif Op dinsdag 15 maart 2011 11:57 schreef koffiegast het volgende:

[..]

Je weet A, B en C. Je hebt A en B nodig om te bepalen hoe de andere lijn die door c gaat op de lijn AB moet staan, namelijk loodrecht (90 graden). C heb je vervolgens nodig om D en E te kunnen bepalen.

De bedoeling hiervan is een path planning van A naar B, dat een radius om C omzeilt. Daarvoor wil ik 2 punten D en E om ze vervolgens te testen op bereikbaarheid.
Let er wel op dat bijvoorbeeld het lijnstuk AD de cirkel om C wel snijdt.
HJ 14-punt-gift.
Lijst met rukmateriaal!
pi_94151345
quote:
14s.gif Op dinsdag 15 maart 2011 12:32 schreef freiss het volgende:

[..]

Let er wel op dat bijvoorbeeld het lijnstuk AD de cirkel om C wel snijdt.
Dat snap ik, de bedoeling is dat de distance die ik gebruik groter is dan het bereik van de vijand op plaats C. Ik heb ondertussen ook iets dat het oplost, met behulp van cos/sin op atan van de helling.
pi_94199226
Hoe pak ik de volgende differentiaalvergelijking aan:

f(t) ' = f(t) * (b+a) / (1-at)

Met b en a, zekere constante. En t de variabele.
?
  woensdag 16 maart 2011 @ 17:22:25 #26
75592 GlowMouse
l'état, c'est moi
pi_94199336
Gebruik d/dt ln(f(t)) = f'(t) / f(t).
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94202139
quote:
12s.gif Op woensdag 16 maart 2011 17:20 schreef TheLoneGunmen het volgende:
Hoe pak ik de volgende differentiaalvergelijking aan:

f(t) ' = f(t) * (b+a) / (1-at)

Met b en a, zekere constante. En t de variabele.
?
Productregel en quotientregel?
pi_94205698
Ow wacht volgens mij is het best simpel.
f(t)=c/(1-at)^(b/a+1)
  woensdag 16 maart 2011 @ 19:34:10 #29
199256 kwiwi
de enige echte.
pi_94205823
Kan ik hier ook met een (waarschijnlijk domme :') ) statistiek vraag terecht? Onderstaande is het probleem....

Ik moet de standard deviation van de residuals berekenen. Nu weet ik wel hoe ik dat moet uitrekenen als ik over alle getallen beschik, maar hoe kom ik eraan als ik alleen maar over de mean en standard deviation van y beschik?

In dit geval is de mean 107.0 en de standard deviation 19.5, het aantal waarnemingen is 77.
Het antwoord is 16.2

Bijbehorende formules:


Hoe kom ik met de gegevens, via deze formules, aan het antwoord 16.2?
pi_94206003
quote:
1s.gif Op woensdag 16 maart 2011 19:31 schreef Hypnagogia het volgende:
Ow wacht volgens mij is het best simpel.
f(t)=c/(1-at)^(b/a+1)
Nee, niet helemaal.
pi_94206113
- ninja solved

[ Bericht 47% gewijzigd door BasementDweller op 16-03-2011 19:50:20 ]
pi_94208391
Wat klopt er niet dan Thabit?
f'(t)/f(t) = (b+a )/ (1-at)
ln(f(t))=int((b+a)/(1-at))
f(t)=exp(int((b+a)/(1-at)))=exp(-((a+b)log(1-at))/a)=(1-at)^(-(a+b)/a)
  woensdag 16 maart 2011 @ 20:37:22 #33
75592 GlowMouse
l'état, c'est moi
pi_94210020
quote:
1s.gif Op woensdag 16 maart 2011 19:34 schreef kwiwi het volgende:
Kan ik hier ook met een (waarschijnlijk domme :') ) statistiek vraag terecht? Onderstaande is het probleem....

Ik moet de standard deviation van de residuals berekenen. Nu weet ik wel hoe ik dat moet uitrekenen als ik over alle getallen beschik, maar hoe kom ik eraan als ik alleen maar over de mean en standard deviation van y beschik?

In dit geval is de mean 107.0 en de standard deviation 19.5, het aantal waarnemingen is 77.
Het antwoord is 16.2

Bijbehorende formules:
[ afbeelding ]

Hoe kom ik met de gegevens, via deze formules, aan het antwoord 16.2?
De vraag is echt incompleet. De vraag sluit bv. niet uit dat x=y, en dan heb je een perfect-fit.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  woensdag 16 maart 2011 @ 20:39:59 #34
199256 kwiwi
de enige echte.
pi_94210164
quote:
1s.gif Op woensdag 16 maart 2011 20:37 schreef GlowMouse het volgende:

[..]

De vraag is echt incompleet. De vraag sluit bv. niet uit dat x=y, en dan heb je een perfect-fit.
Ah sorry, mean van x = 7 en standard deviation is 4.4. Dacht dat dat niet belangrijk was gezien de formules.

Ik heb nog gedacht dat het wellicht gewoon een onduidelijk voorbeeld was en de standard deviation van de residuals een gegeven was omdat het op deze manier niet uit te rekenen is? Maar dat weet ik dus niet zeker :P
  woensdag 16 maart 2011 @ 20:43:19 #35
75592 GlowMouse
l'état, c'est moi
pi_94210355
Is toevallig ook nog de correlatie tussen x en y gegeven?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  woensdag 16 maart 2011 @ 20:45:02 #36
199256 kwiwi
de enige echte.
pi_94210467
quote:
1s.gif Op woensdag 16 maart 2011 20:43 schreef GlowMouse het volgende:
Is toevallig ook nog de correlatie tussen x en y gegeven?
r = 0.564.

Sorry dat je de vraag in delen krijgt :@
  woensdag 16 maart 2011 @ 20:52:50 #37
75592 GlowMouse
l'état, c'est moi
pi_94210985
niet de correlatie tussen x en y?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  woensdag 16 maart 2011 @ 20:53:30 #38
199256 kwiwi
de enige echte.
pi_94211027
quote:
1s.gif Op woensdag 16 maart 2011 20:52 schreef GlowMouse het volgende:
niet de correlatie tussen x en y?
Nee dit is alles wat ik heb... mean x en y, SD x en y, en die correlatie...
pi_94211353
Ik post hier nogmaals mijn vraag aangezien ik hem net verkeerd heb geplaatst denk ik.

Hallo allemaal, ik moet voor wiskunde een po maken maar er is een vraag waar ik maar niet uitkom. Deze gaat als volgt:
Iemand vult op de gok alle 30 vragen van een 5 keuze toets in . de inspectie wil dat in zon geval de kans op slagen voor de toets hoogstens 5% is. welk aantal vragen moet je minstens goed hebben om dan toch nog te slagen.

Kan iemand mij hiermee helpen?
pi_94211430
quote:
1s.gif Op woensdag 16 maart 2011 20:12 schreef Hypnagogia het volgende:
Wat klopt er niet dan Thabit?
f'(t)/f(t) = (b+a )/ (1-at)
ln(f(t))=int((b+a)/(1-at))
f(t)=exp(int((b+a)/(1-at)))=exp(-((a+b)log(1-at))/a)=(1-at)^(-(a+b)/a)
Sorry, het klopt toch, ik zat scheel naar de formule te kijken volgens mij.
  woensdag 16 maart 2011 @ 21:08:45 #41
75592 GlowMouse
l'état, c'est moi
pi_94211844
quote:
1s.gif Op woensdag 16 maart 2011 20:53 schreef kwiwi het volgende:

[..]

Nee dit is alles wat ik heb... mean x en y, SD x en y, en die correlatie...
Ik kom hierop:
SST = MST * (n-1) = 19.5² * 76 = 28899
R² = 1-SSE/SST
SSE/SST = 1-R²
SSE = (1-R²)*SST = (1-0.564²) * 28899 = 19706,34
Dit moet je delen door n-2 en dan de wortel trekken, en dan komt er 16,21 uit.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  woensdag 16 maart 2011 @ 21:19:54 #42
199256 kwiwi
de enige echte.
pi_94212490
quote:
1s.gif Op woensdag 16 maart 2011 21:08 schreef GlowMouse het volgende:

[..]

Ik kom hierop:
SST = MST * (n-1) = 19.5² * 76 = 28899
R² = 1-SSE/SST
SSE/SST = 1-R²
SSE = (1-R²)*SST = (1-0.564²) * 28899 = 19706,34
Dit moet je delen door n-2 en dan de wortel trekken, en dan komt er 16,21 uit.
Ah, hier was ik zelf waarschijnlijk nooit zo snel opgekomen.. Dankje! :*
pi_94212950
quote:
14s.gif Op woensdag 16 maart 2011 21:00 schreef thabit het volgende:

[..]

Sorry, het klopt toch, ik zat scheel naar de formule te kijken volgens mij.
Tof, bedankt voor je check.
pi_94236836
-fout-

[ Bericht 91% gewijzigd door Siddartha op 17-03-2011 14:06:47 ]
pi_94237037
Volgens mij is daar geen standaard manier voor.
pi_94237352
quote:
1s.gif Op donderdag 17 maart 2011 13:59 schreef BasementDweller het volgende:
Volgens mij is daar geen standaard manier voor.
Sorry, ik had de opdracht verkeerd gelezen.
  donderdag 17 maart 2011 @ 16:29:09 #47
120074 KlownJB
Gele Galliër
pi_94243537
quote:
1s.gif Op woensdag 16 maart 2011 20:59 schreef Tainted667 het volgende:
Ik post hier nogmaals mijn vraag aangezien ik hem net verkeerd heb geplaatst denk ik.

Hallo allemaal, ik moet voor wiskunde een po maken maar er is een vraag waar ik maar niet uitkom. Deze gaat als volgt:
Iemand vult op de gok alle 30 vragen van een 5 keuze toets in . de inspectie wil dat in zon geval de kans op slagen voor de toets hoogstens 5% is. welk aantal vragen moet je minstens goed hebben om dan toch nog te slagen.

Kan iemand mij hiermee helpen?
Ah kansrekenen, leuk.

Je moet dus berekenen wat de kans is op het aantal vragen goed, als een functie van het aantal vragen goed.
Dus stel X is het aantal vragen goed, dan moet je de formule opstellen voor P(X=x) (of je rekent het op een andere manier uit).

Vervolgens moet je dus de 5% grens bepalen. Hiervoor moet je de kans voor de hoogste waarden van x bij elkaar optellen, zodat de som onder de 5% blijft, dus zo:
mimetex.cgi?%5Csum_%7Bx%3Dn%7D%5E%7B30%7D%20P%28X%3Dx%29%20%3C%205%25

De bovengrens is het maximaal mogelijke aantal vragen goed en de ondergrens is de waarde die je zoekt.
Doei
pi_94247724
een kleine vraag die je met het binomium van newton op zou moeten kunnen lossen:
c. Er zijn op een avond maar 2 wedstrijden gespeeld. Je hebt gehoord dat er die avond liefst 7 penalty's zijn gegeven. Neem aan dat elke club met dezelfde kans een penalty krijgt.
Bereken de kans dat precies 4 van de penalty's aan eenzelfde club werden gegeven.

Ik raak een beetje in de war omdat er nu opeens meerdere mogelijkheden zijn. Bij voorgaande vragen was er altijd een kans op 'succes', en was de vraag hoe groot de kans was op x successen, nu zijn er opeens 4 teams.
Finally, someone let me out of my cage
pi_94247796
Een penalty wordt gegeven aan team A (met kans 1/4) of aan een ander team (met kans 3/4).
  donderdag 17 maart 2011 @ 19:20:17 #50
75592 GlowMouse
l'état, c'est moi
pi_94250753
Waarbij een club niet 2x mag spelen.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94251610
Heh, ik snap het. Bedankt!

De kans dat een specifieke club precies 4 penalty's krijgt is:
7! / 4! / 3! * (1/4)4 . (3/4)3 = 945/16384

De kans dat één van de clubs 4 pentalty's krijgt is dan dacht ik 4 keer zo groot:
945/16384 . 4 = 945/4096

^O^

(het antwoord klopt met wat er in het antwoordenboekje staat, dus ik neem maar even aan dat de redenering ook klopt)

[ Bericht 5% gewijzigd door minibeer op 17-03-2011 19:43:39 ]
Finally, someone let me out of my cage
  donderdag 17 maart 2011 @ 19:39:56 #52
75592 GlowMouse
l'état, c'est moi
pi_94251877
'dacht ik' is geen redenering. Wanneer kun je kansen optellen?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94252075
ik had er nog dacht ik in staan omdat ik eerst niet uitkwam, vandaar ;).
Je kan kansen optellen als ze afhankelijk van elkaar zijn (als de gebeurtenissen waar de kansen voor staan, niet tegelijk op kunnen treden), wat zo is in dit geval. Als er bijvoorbeeld 8 penalty's werden gegeven, had mijn redenering niet meer geklopt, omdat dan het een (team a heeft 4 penalty's gekregen) het ander (een ander team heeft 4 penalty's gekregen) niet uitsluit.
Finally, someone let me out of my cage
pi_94276867
wat ik me net realiseer, er is in, als je alleen de beginsituatie weet, er geen verschillen in kansen zijn tussen een binomiale situatie ('met terugleggen') en een hypergeometrische ('zonder terugleggen').
Zowel de verwachte waarde als de kans op een uitkomst van een bepaalde greep is hetzelfde.
De mogelijke totale uitkomsten verschillen echter wel, omdat er in de binomiale situatie uitkomsten mogelijk zijn die in de hypergeometrische situatie niet mogelijk zouden zijn kunnen voorkomen. De verwachte totale uitkomst is dan weer wel hetzelfde.
SPOILER
Om spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.
Finally, someone let me out of my cage
pi_94296948
Even een, naar ik vrees, domme vraag, maar Wiskunde B is voor mij ook al erg lang geleden :@ :o

De integraal van 0 tot x van (2 - 1/2 x^2)dx = 4/3.

2x - 1/6 x^3 - 4/3 = 0 dan. Toch? Want 0 invullen in de primitieve geeft 0.

Hoe nu verder?
  vrijdag 18 maart 2011 @ 16:58:08 #56
75592 GlowMouse
l'état, c'est moi
pi_94297156
Bedoel je de integraal van 0 tot x van (2 - 1/2 y^2)dy?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94297240
quote:
1s.gif Op vrijdag 18 maart 2011 16:58 schreef GlowMouse het volgende:
Bedoel je de integraal van 0 tot x van (2 - 1/2 y^2)dy?
Ja, sorry. Is lang geleden he ;)
pi_94298322
nvm
pi_94298347
quote:
1s.gif Op vrijdag 18 maart 2011 17:25 schreef BasementDweller het volgende:
2x - 1/6 x^3 = 4/3

x(2+1/6 x^2) = 4/3
En dan?
pi_94298471
quote:
1s.gif Op vrijdag 18 maart 2011 17:26 schreef ColdFeet het volgende:

[..]

En dan?
Ja daar heb je dus niks aan he :)

Volgens mij is er geen eenvoudige manier om het op te lossen. Je kan wat waardes proberen, of deze formule gebruiken http://nl.wikipedia.org/wiki/Formule_van_Cardano .

edit: Waardes invullen heeft hier weinig zin, want de oplossing is niet netjes een geheel getal. Je zal echt de formule van Cardano moeten gebruiken, of een computer :)

[ Bericht 15% gewijzigd door BasementDweller op 18-03-2011 17:34:18 ]
pi_94298753
Aaaaamai. Nou, ik geloof dat de uitwerking ervan ook in het boek staat dat nog op mijn werk ligt, ik zoek het maandag wel op :o Ik dacht dat ik het zelf nog wel zou kunnen... Diep teleurgesteld :P
pi_94298895
Misschien mis ik een handig trucje om dit zonder die formule te kunnen berekenen...
pi_94303516


De p_X in de opdracht is de uniforme over interval van a tot b, dus:

p_X(x) = 1/(b-a) als a<x<b en 0 elders

dus dat invullen krijg ik zoiets;


Maar hoe nu verder vereenvoudigen?
  vrijdag 18 maart 2011 @ 19:31:10 #64
75592 GlowMouse
l'état, c'est moi
pi_94303775
Uitrekenen, niet vereenvoudigen.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94303937
1/2 (a+b) dus?
  vrijdag 18 maart 2011 @ 19:37:47 #66
75592 GlowMouse
l'état, c'est moi
pi_94304193
ja.

[ Bericht % gewijzigd door GlowMouse op 18-03-2011 19:56:24 ]
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94308226
http://wiskunde-interactief.be/
Onder functies ---> veeltermfuncties: nultermen en teken

"Je hoeft enkel de gehele delers van de constante term van de veelterm te controleren.
Voor f(x) = 2x^3 + x^2 - 5x + 2 zijn dat dus 1, 2, -1 en -2."

Kan iemand algebraïsch bewijzen dat wanneer voor een gehele waarde van x y=0, die x een gehele deler is van de constante term d?
ING en ABN investeerden honderden miljoenen euro in DAPL.
#NoDAPL
pi_94308399
Laat maar, ik heb het antwoord gevonden.
ING en ABN investeerden honderden miljoenen euro in DAPL.
#NoDAPL
pi_94309746
quote:
1s.gif Op vrijdag 18 maart 2011 17:35 schreef ColdFeet het volgende:
Aaaaamai. Nou, ik geloof dat de uitwerking ervan ook in het boek staat dat nog op mijn werk ligt, ik zoek het maandag wel op :o Ik dacht dat ik het zelf nog wel zou kunnen... Diep teleurgesteld :P
Waarom teleurgesteld? En tot maandag wachten hoeft ook niet, het net lost al je problemen op. De kubische vergelijking die je krijgt kun je herleiden tot:

x3 - 12x + 8 = 0.

Deze vergelijking heeft geen 'mooie' gehele oplossingen, maar wel drie reële oplossingen, en dat maakt het gebruik van de formule van Cardano niet zo praktisch (casus irreducibilis):



Wil je toch Cardano gebruiken, kijk dan even hier.
pi_94311950
Heb problemen met mijn opdracht voor quantitative business methods, het gaat over forecasting.. ik krijg mijn graph maar niet goed..
kan iemand me helpen?
de opdracht is het volgende:
quote:
quote:
 PosterImage
■ PosterImage is successfully producing high end plotter systems. It
is a growing market.
The dataset (see PosterImage_Exercise_B.xlsx) represents the
sales volume (in units per week), which is accurately recorded on
weekly basis over a period of 3 years.
■ Make a sales forecast for the next year.
■ Production capacity is limited to 300 pieces per week.
■ Management has decided not to increase production capacity but to
anticipate (calculated) shortage by producing in advance.
■ Make a forecast of the required production level and the inventory level.
■ Write a two page management report (full story,
Hier is de link naar mijn exel bestand.
http://echelon.sohosted.com/schoolwerk/forecasting2.zip

Ik denk dat ik gewoon die graph die nu helemaal links bovenaan staat, aaneenvolgend op de bestaande te krijgen, om zo een logische forecast te zien.. maar het mislukt altijd

ALvast bedankt !!!
pi_94312501
quote:
1s.gif Op vrijdag 18 maart 2011 21:40 schreef MichaelV8888 het volgende:
Heb problemen met mijn opdracht voor quantitative business methods, het gaat over forecasting.. ik krijg mijn graph maar niet goed..
Ik zou de vraag op een Engelstalig forum posten als ik jou was.
pi_94312843
Nja is mss wel beter, ik dacht althans dat Nederlanders Engels goed verstaan.
pi_94315087
Niemand ? :(
pi_94317278
Het is geen pure wiskunde/reken-vraag... hier heb je dan niet zoveel kans op succes.
  zaterdag 19 maart 2011 @ 00:27:42 #75
75592 GlowMouse
l'état, c'est moi
pi_94320464
In kolom B ontbreekt 166, het is onduidelijk wat kolom F nou precies is (gemiddelde van wat?) en in kolom G vergeet je haakjes. Je vraag lijkt ook meer over Excel te gaan: hoe laat je een grafiek niet bij links beginnen.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  zaterdag 19 maart 2011 @ 13:41:14 #76
141665 IrishBastard
Is that right, Rambo?
pi_94331838
Ik heb ook een vraagje. Ben bezig met determinanten van een matrix berekenen. Aangezien het bij een 4x4 matrix behoorlijk wat werk is om alle losse determinanten uit te rekenen, leek het me handig om de matrix in rijtrapvorm te brengen (dus iedere rij een pivot) en dan zo alle pivots maal elkaar te doen. Volgens de sheets van het vak kom je zo ook op de determinant. Enkele proeven van mij kwamen inderdaad op het juiste antwoord. Nou heb ik echter een matrix die als volgt is:

{{0,1,2,0},{1,0,-1,1},{2,1,2,1},{1,1,1,-1}}

Als ik deze in rijtrap vorm wil brengen, doe ik de volgende stappen:
Rij 4 - Rij 2, Rij 3 - 2*rij2

Ik kom dan op:
{{0,1,2,0},(1,0,-1,1},{0,1,4,-1},{0,1,2,-2}}

Dan doe ik:
Rij4-Rij1, Rij3-Rij1

{{0,1,2,0},{1,0,-1,1},{0,0,2,-1},{0,0,0,-2}}

Als ik hier dan nog rij 2 en rij 1 wissel, kan ik de pivots vermenigvuldigen. Ik kom dan op 1*1*2*-2 = -4

Als ik echter de originele matrix invul in Wolfram Alpha, en nadat ik hem toch met de hand berekend heb (dus alle subdeterminanten etc. ) geeft hij determinant = 4.

Wat doe ik fout, of maakt determinant = 4 of -4 niet uit?

Alvast bedankt!
  zaterdag 19 maart 2011 @ 13:45:33 #77
75592 GlowMouse
l'état, c'est moi
pi_94331953
Als je twee rijen verwisselt, verandert de determinant van teken. Controleer bv. met [1 2; 3 4] en [3 4; 1 2].
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  zaterdag 19 maart 2011 @ 13:49:49 #78
141665 IrishBastard
Is that right, Rambo?
pi_94332095
Ok, ik zie het punt. Nou snap ik alleen nog niet helemaal hoe dit toe te passen is. Als ik om het even waar een rij wissel, wordt de uitkomst het tegenovergestelde van wat het eerst was?
  zaterdag 19 maart 2011 @ 14:18:04 #79
75592 GlowMouse
l'état, c'est moi
pi_94332849
Dat ja.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94332882
quote:
1s.gif Op zaterdag 19 maart 2011 13:49 schreef IrishBastard het volgende:
Ok, ik zie het punt. Nou snap ik alleen nog niet helemaal hoe dit toe te passen is. Als ik om het even waar een rij wissel, wordt de uitkomst het tegenovergestelde van wat het eerst was?
Onthoud de elementaire rij-operaties.
Als je een matrix A hebt, en ik verwissel een rij dan word de determinant A=(-1)detA'
(Met A' is de matrix A waar je de rij van verwisselt hebt.)
Dus ook als je nu weer een rij verwisselt van A', dan krijg je:
Det A'= (-1)detA''
etc.
  zaterdag 19 maart 2011 @ 14:26:11 #81
141665 IrishBastard
Is that right, Rambo?
pi_94333066
quote:
1s.gif Op zaterdag 19 maart 2011 14:19 schreef Siddartha het volgende:

[..]

Onthoud de elementaire rij-operaties.
Als je een matrix A hebt, en ik verwissel een rij dan word de determinant A=(-1)detA'
(Met A' is de matrix A waar je de rij van verwisselt hebt.)
Dus ook als je nu weer een rij verwisselt van A', dan krijg je:
Det A'= (-1)detA''
etc.
^O^
pi_94348231
Wat is nou precieze verschil tussen cross-correlatie en convolutie? Ik kan het maar niet haarfijn zien. Ik bedoel, de ene gaat van links naar rechts en de andere rechts naar links is het idee. Maar verder dan dat...?
pi_94348381
Ik zou graag wat meer willen leren over de getaltheorie. Kan iemand me een boek aanraden? (Ik heb nu alleen middelbare-school-niveau wiskunde gehad)
Finally, someone let me out of my cage
pi_94349232
quote:
1s.gif Op zaterdag 19 maart 2011 21:14 schreef minibeer het volgende:
Ik zou graag wat meer willen leren over de getaltheorie. Kan iemand me een boek aanraden? (Ik heb nu alleen middelbare-school-niveau wiskunde gehad)
Er zijn legio boeken over getaltheorie geschreven, op alle mogelijke niveaus. Misschien is "Getaltheorie voor beginners" van Frits Beukers iets voor je?
pi_94355242
quote:
1s.gif Op zaterdag 19 maart 2011 21:32 schreef thabit het volgende:

[..]

Er zijn legio boeken over getaltheorie geschreven, op alle mogelijke niveaus. Misschien is "Getaltheorie voor beginners" van Frits Beukers iets voor je?
Had hem ook gevonden, is ook niet zo duur, dus misschien ga ik die wel inslaan :Y.
Finally, someone let me out of my cage
pi_94357000
Ik heb colleges gevolgd van F. Beukers, goeie kerel
pi_94370954
- Wiskundevraagje.

[ Bericht 49% gewijzigd door GlowMouse op 20-03-2011 13:17:54 ]
-
  zondag 20 maart 2011 @ 15:50:31 #88
141665 IrishBastard
Is that right, Rambo?
pi_94378243
Kan iemand mij vertellen waarom in onderstaand voorbeeld de determinant * 1/1000 moet? Om van 0,6 een 6 te maken is het toch 1/10? :? Ik snap er werkelijk geen ruk meer van. Zeker niet omdat ook de Lambda maal 10 gedaan is :?

pi_94378416
Het is een 3x3-matrix. Vermenigvuldig je alle elementen met 10, dan wordt de determinant met 103 vermenigvuldigd.
  zondag 20 maart 2011 @ 15:57:34 #90
141665 IrishBastard
Is that right, Rambo?
pi_94378533
Euh, wat? Ik snap je nog niet helemaal :')
pi_94378889
Als je een (3-dimensionale) kubus hebt, en je vermenigvuldigt alle ribben met 10, dan wordt de inhoud 1000 keer zo groot. Zo werkt dat ook met matrices en determinanten.
  zondag 20 maart 2011 @ 16:11:51 #92
141665 IrishBastard
Is that right, Rambo?
pi_94379001
Ah, ok. Thanks!
pi_94394146
Als de variantie en verwachting van een stochast overeenkomen met die van een zekere verdeling, dan is het toch nog niet per se waar dat de stochast die verdeling heeft?
  zondag 20 maart 2011 @ 21:40:33 #94
75592 GlowMouse
l'état, c'est moi
pi_94394669
Klopt
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94396754
Oke.

Maar kan het op de één of andere manier toch helpen bij het vinden van de verdeling als je de Var en E weet?
  zondag 20 maart 2011 @ 22:46:30 #96
120139 freiss
Hertog Jan :9~
pi_94398828
quote:
1s.gif Op zondag 20 maart 2011 22:16 schreef BasementDweller het volgende:
Oke.

Maar kan het op de één of andere manier toch helpen bij het vinden van de verdeling als je de Var en E weet?
Ja
HJ 14-punt-gift.
Lijst met rukmateriaal!
pi_94400406
Hoe?
  zondag 20 maart 2011 @ 23:20:00 #98
120139 freiss
Hertog Jan :9~
pi_94400797
quote:
7s.gif Op zondag 20 maart 2011 23:13 schreef BasementDweller het volgende:
Hoe?
Als de E en de VAR heel ver van elkaar liggen is het bijvoorbeeld niet te verwachten dat de stochast de Poissonverdeling volgt
HJ 14-punt-gift.
Lijst met rukmateriaal!
pi_94401417
Dat helpt niet echt bij de bepaling wat de distributie wel is. Dan blijf je nog wel even aan de gang, wil je de oneindige hoeveelheid van mogelijke distributies wegstrepen zodat er één overblijft.
  maandag 21 maart 2011 @ 00:31:21 #100
75592 GlowMouse
l'état, c'est moi
pi_94404162
quote:
13s.gif Op zondag 20 maart 2011 23:30 schreef BasementDweller het volgende:
Dat helpt niet echt bij de bepaling wat de distributie wel is. Dan blijf je nog wel even aan de gang, wil je de oneindige hoeveelheid van mogelijke distributies wegstrepen zodat er één overblijft.
Dat gaat natuurlijk nooit. Wil je ook maar een beetje goede schatting kunnen maken, dan heb je veel meer informatie nodig dan twee momenten. Als X binomiaal verdeeld is met n=4 en p=1/2 dan heeft een normaal verdeelde stochast met mu=2 en sigma=1 dezelfde E/Var. En zo kun je ook een t-verdeelde stochast vinden, en een gamma-verdeelde stochast, en je kunt zelf ook een hoop andere pdf's verzinnen.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94414278
1 klein vraagje waarop ik hoop dat iemand hier het antwoord heeft.
In mijn boek schrijven ze cos(u+v) + cos(u+v) x (-sin u) om tot [1-sin u] cos(u+v)
Ik kom er echt niet uit waarom ze dit zo kunnen schrijven?
Yeah I talk shit, just deal with it.
  maandag 21 maart 2011 @ 12:26:29 #102
75592 GlowMouse
l'état, c'est moi
pi_94414823
Werk rechts de haakjes eens weg.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94414833
quote:
1s.gif Op maandag 21 maart 2011 12:09 schreef marshmallow het volgende:
1 klein vraagje waarop ik hoop dat iemand hier het antwoord heeft.
In mijn boek schrijven ze cos(u+v) + cos(u+v) x (-sin u) om tot [1-sin u] cos(u+v)
Ik kom er echt niet uit waarom ze dit zo kunnen schrijven?
Elementaire algebra: haal de factor cos(u+v) buiten haakjes.

Vergelijk:

a - ab = (1 - b)a
  maandag 21 maart 2011 @ 18:59:42 #104
100126 Maraca
#cijferfetisjist
pi_94432012
Ik kom niet uit de volgende vraag:

Op de grafiek van y = x2 -4x + 5 liggen de punten..

Ik kom niet verder dan:

y = +5
y = (0,5)

en

x2 = 12 = (1)

Maar volgens het antwoordmodel moet x = (1,2) zijn. Althans, het antwoord is (1,2) en (0,5)

Zou iemand mij dit uit kunnen leggen? O+
Verily i say unto you; dost thou even hoist, brethren? - Jesus (Psalm 22)
  maandag 21 maart 2011 @ 19:05:17 #105
75592 GlowMouse
l'état, c'est moi
pi_94432284
Vul x=1 in en je komt op y=2.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  maandag 21 maart 2011 @ 19:08:55 #106
100126 Maraca
#cijferfetisjist
pi_94432472
quote:
1s.gif Op maandag 21 maart 2011 19:05 schreef GlowMouse het volgende:
Vul x=1 in en je komt op y=2.
Oh wacht, dan pak ik het helemaal verkeerd aan :') maar dan snap ik het ook niet meer :@
Verily i say unto you; dost thou even hoist, brethren? - Jesus (Psalm 22)
pi_94436582
quote:
1s.gif Op maandag 21 maart 2011 19:08 schreef Maraca het volgende:

[..]

Oh wacht, dan pak ik het helemaal verkeerd aan :') maar dan snap ik het ook niet meer :@
Wat is nu precies de vraag? Er liggen namelijk oneindig veel punten op de grafiek...
The biggest argument against democracy is a five minute discussion with the average voter.
pi_94437514
quote:
1s.gif Op maandag 21 maart 2011 19:08 schreef Maraca het volgende:

[..]

Oh wacht, dan pak ik het helemaal verkeerd aan :') maar dan snap ik het ook niet meer :@
Uitgaande van je antwoordenboekje willen ze dus de coordinaten (x,y) weten van x=1 en x=0. Het enige wat je dus hoeft te doen is de waarde van x in te vullen in de formule, om de bijbehorende y te verkrijgen.
  dinsdag 22 maart 2011 @ 05:58:39 #109
100126 Maraca
#cijferfetisjist
pi_94456249
quote:
1s.gif Op maandag 21 maart 2011 20:17 schreef M.rak het volgende:

[..]

Wat is nu precies de vraag? Er liggen namelijk oneindig veel punten op de grafiek...
De letterlijke vraag is: op de grafiek van y = x2 - 4x + 5 liggen de punten..
En dan is het antwoord (1,2) en (0,5). Maar voor mij is het een raadsel hoe je daar komt. Ik waardeer de tips enorm, maar ik loop gewoon vast omdat dit nieuw voor mij is.
Verily i say unto you; dost thou even hoist, brethren? - Jesus (Psalm 22)
pi_94456433
quote:
1s.gif Op dinsdag 22 maart 2011 05:58 schreef Maraca het volgende:

[..]

De letterlijke vraag is: op de grafiek van y = x2 - 4x + 5 liggen de punten..
En dan is het antwoord (1,2) en (0,5). Maar voor mij is het een raadsel hoe je daar komt. Ik waardeer de tips enorm, maar ik loop gewoon vast omdat dit nieuw voor mij is.
De grafiek van y = x2 - 4x + 5 is een parabool, en uiteraard liggen er oneindig veel punten op die parabool. Maar er ontbreekt een stuk tekst in je vraag, want als er verder niets over de (twee) gevraagde punten op die parabool is gegeven, dan is het onzinnig te beweren dat de twee punten met coördinaten (1;2) en (0;5) 'het antwoord' zijn op de vraag: er is namelijk helemaal geen vraagstelling zo. Ik hoop dat je de onzinnigheid hiervan zelf ook inziet.
  dinsdag 22 maart 2011 @ 08:06:50 #111
100126 Maraca
#cijferfetisjist
pi_94457003
Ik heb de vraag niet bedacht he :P vraag komt uit een rekenvaardigheidstoets, waarbij je zonder rekenmachine vragen op moet lossen. Was bezig met het maken van een uitgebreid antwoordmodel, maar liep hier volledig vast. Alle gegevens die ik heb, heb ik gepost! Ik zal het voorleggen aan een collega en kijken wat we met die vraag gaan doen. :)
Verily i say unto you; dost thou even hoist, brethren? - Jesus (Psalm 22)
pi_94462183
óf er mist een stuk van de vraag, óf het is gewoon de bedoeling dat dat je twee willekeurige punten op de grafiek kiest (dat zou een beetje onzinnig zijn, maar ik heb wel meer onzinnige vragen gezien)
Finally, someone let me out of my cage
pi_94462898
quote:
1s.gif Op zaterdag 19 maart 2011 21:11 schreef koffiegast het volgende:
Wat is nou precieze verschil tussen cross-correlatie en convolutie? Ik kan het maar niet haarfijn zien. Ik bedoel, de ene gaat van links naar rechts en de andere rechts naar links is het idee. Maar verder dan dat...?
Iemand?
  dinsdag 22 maart 2011 @ 12:21:27 #114
246388 Thorpe
Gewoon, bam
pi_94463224
quote:
1s.gif Op zaterdag 19 maart 2011 21:11 schreef koffiegast het volgende:
Wat is nou precieze verschil tussen cross-correlatie en convolutie? Ik kan het maar niet haarfijn zien. Ik bedoel, de ene gaat van links naar rechts en de andere rechts naar links is het idee. Maar verder dan dat...?
Eigenlijk gaan ze allebei 'van links naar rechts', maar bij convolutie spiegel je één van de functies in de y-as. Kruiscorrelatie geeft een idee van de mate waarin twee functies op elkaar lijken (vandaar 'correlatie'). De convolutie van twee functies geeft een soort mix van de twee functies, de betekenis hiervan wordt vaak pas duidelijk wanneer je het voor een specifieke toepassing gebruikt.
Rekwisieten naar de veldhond.
pi_94489313
Als je van de kolomvectoren van een matrix wil laten zien dat ze lineair onafhankelijk zijn en ze bestaan uit functies als elementen, moet je dan laten zien dat er geen niet-triviale oplossing is (van de vergelijking met daarin een lineaire combinatie van de kolomvectoren gelijkgesteld aan nul) voor alle waarden in het domein van de functies? Of is het genoeg om te laten zien dat ze onafhankelijk zijn voor een zekere waarde.

[ Bericht 4% gewijzigd door BasementDweller op 22-03-2011 22:28:22 ]
  dinsdag 22 maart 2011 @ 22:23:59 #116
75592 GlowMouse
l'état, c'est moi
pi_94489493
Wat is een lin.onafh. matrix?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94489797
quote:
1s.gif Op dinsdag 22 maart 2011 22:23 schreef GlowMouse het volgende:
Wat is een lin.onafh. matrix?
fixed
  dinsdag 22 maart 2011 @ 22:29:34 #118
75592 GlowMouse
l'état, c'est moi
pi_94489848
Alle. Het makkelijkste is om er eentje te pakken en dat ze lin.onafh. zijn, of om er twee te pakken en te laten zien dat de gewichten anders zijn.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94490079
quote:
1s.gif Op dinsdag 22 maart 2011 22:29 schreef GlowMouse het volgende:
Alle. Het makkelijkste is om er eentje te pakken en dat ze lin.onafh. zijn, of om er twee te pakken en te laten zien dat de gewichten anders zijn.
Je bedoelt: je pakt een waarde en laat zien dat ze onaf. zijn? Maar dan heb je het juist niet voor alle waarden in het domein van die functie...
pi_94490208
quote:
1s.gif Op dinsdag 22 maart 2011 22:29 schreef GlowMouse het volgende:
Alle. Het makkelijkste is om er eentje te pakken en dat ze lin.onafh. zijn, of om er twee te pakken en te laten zien dat de gewichten anders zijn.
Nee, de kolommen kunnen linear onafhankelijk zijn zonder dat voor alle waarden te zijn. Lineaire algebra bedrijf je over een lichaam, het lichaam in deze kwestie is in dit geval een lichaam van functies. Als ze voor 1 enkele waarde van de functie lineair onafhankelijk zijn, dan zijn ze onafhankelijk over dit lichaam van functies. Het omgekeerde geldt echter niet: ze kunnen best lineair onafhankelijk zijn over het lichaam van functies en tegelijkertijd voor geen enkele waarde die je invult.
pi_94490330
quote:
1s.gif Op dinsdag 22 maart 2011 22:35 schreef thabit het volgende:

[..]

Nee, de kolommen kunnen linear onafhankelijk zijn zonder dat voor alle waarden te zijn. Lineaire algebra bedrijf je over een lichaam, het lichaam in deze kwestie is in dit geval een lichaam van functies. Als ze voor 1 enkele waarde van de functie lineair onafhankelijk zijn, dan zijn ze onafhankelijk over dit lichaam van functies. Het omgekeerde geldt echter niet: ze kunnen best lineair onafhankelijk zijn over het lichaam van functies en tegelijkertijd voor geen enkele waarde die je invult.
Thanks, dat scheelt weer werk ;)
  dinsdag 22 maart 2011 @ 22:40:53 #122
75592 GlowMouse
l'état, c'est moi
pi_94490563
quote:
1s.gif Op dinsdag 22 maart 2011 22:35 schreef thabit het volgende:

[..]

Het omgekeerde geldt echter niet: ze kunnen best lineair onafhankelijk zijn over het lichaam van functies en tegelijkertijd voor geen enkele waarde die je invult.
Dan zijn de gewichten toch anders? Zonee, heb je een voorbeeldje?

edit: met 'pak er twee' bedoel ik wel twee zorgvuldig gekozen.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94490711
quote:
1s.gif Op dinsdag 22 maart 2011 22:40 schreef GlowMouse het volgende:

[..]

Dan zijn de gewichten toch anders? Zonee, heb je een voorbeeldje?
Gewichten? Wat zijn dat?

Anyway, de 1-bij-1 matrix (x2-x) bestaande uit het polynoom x2-x in F2(x) is lineair onafhankelijk over F2(x) maar voor geen enkele waarde van x in F2.
  dinsdag 22 maart 2011 @ 22:46:57 #124
75592 GlowMouse
l'état, c'est moi
pi_94490942
Als Ax=0 dan is x de vector met gewichten. En bij jouw voorbeeld gaat het inderdaad fout.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94491059
quote:
1s.gif Op dinsdag 22 maart 2011 22:43 schreef thabit het volgende:

[..]
Anyway, de 1-bij-1 matrix (x2-x) bestaande uit het polynoom x2-x in F2(x) is lineair onafhankelijk over F2(x) maar voor geen enkele waarde van x in F2.
Als x=1 of x=0 dan x²-x=0 dus bestaan er a =! 0 zdd a * (x^2-x) = 0, dus is hij is lineair afh?
pi_94491209
Juist. Maar goed, het hangt er ook vanaf wat er precies met functies bedoeld wordt hier. Als je het lichaam F2 uitbreidt vind je weer wel waarden van x zdd dat ding lineair onafhankelijk is.
pi_94491482
Hoezo dat? Als je F2 uitbreidt zit x² - x er nog steeds in en is die dus nog steeds lineair afhankelijk? :?
pi_94491732
Het lichaam F4 heeft elementen a waarvoor a2-a niet gelijk is aan 0 (aan 1 in dit geval).
pi_94499254
Vraag:
http://i.imgur.com/nxLtU.jpg

Mijn antwoord:
http://i.imgur.com/3kKlE.gif
http://i.imgur.com/wHAsF.gif

Ik snap hoe je a,b en c moet doen, maar kan iemand me d en e uitleggen?
pi_94501109
d heb je toch al gedaan?
  woensdag 23 maart 2011 @ 10:00:44 #131
75592 GlowMouse
l'état, c'est moi
pi_94501345
d: als je A diagonaliseert kun je hem makkelijk tot een bepaalde macht verheffen
e: de matrix is primitief en dus is de steady state uniek en convergeer je van elke startwaarde naar die steady state.

edit: volgens mij is dat niet van hem, maar het antwoordmodel. Bij d doen ze wat ik zeg, bij e berekenen ze limn naar oneindig Anx,
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94502982
Nee dat is niet het antwoordmodel, dat is mijn antwoord. Ja ik heb ze geprobeerd te maken maar volgens mij zit ik ergens fout. Ik heb bij de berekening van het limiet het voorbeeld in het boek nagedaan. Maar ik snap de achterliggende gedachte niet.
(met http://www.codecogs.com/latex/eqneditor.php gemaakt)
Ik snap e eigenlijk ook wel (kwestie van normaliseren toch?), maar de limiet bij vraag d niet.

Wat ik niet snap, als je een willekeurige matrix A met matrix B = ((1,0),(0,0)) vermenigvuldigd, krijg je toch altijd een matrix met vorm ((a,b),(0,0))?
Maar in ons boek wordt bv de volgende berekening gedaan:

Waar halen ze die tweede kolom dan vandaan?

[ Bericht 3% gewijzigd door .aeon op 23-03-2011 11:07:02 ]
pi_94503288
quote:
2s.gif Op woensdag 23 maart 2011 10:59 schreef .aeon het volgende:
Wat ik niet snap, als je een willekeurige matrix A met matrix B = ((1,0),(0,0)) vermenigvuldigd, krijg je toch altijd een matrix met vorm ((a,b),(0,0))?
Hangt ervan af of je het links of rechts daarmee vermenigvuldigt, ik zou gewoon AB en BA allebei eens uitwerken als ik jou was.
pi_94503736
Ahhh crap ik zie het al. Ik had in mijn hoofd zitten dat T-1*((1,0),(0,0))*T in de vorm van ((a,b),(0,0)) zou moeten zijn maar dat is niet zo
Even nagerekend
((1,2),(1,-1))*((1,0),(0,0) = ((1,2),(0,0))
((1,2),(0,0))*(1/3)((1,2),(1,-1)) = (1/3)((1,2),(1,2))

Bedankt :P
pi_94551890
Ik heb weer eens een wiskunde vraagstuk waar ik niet uitkom, en volgens mij is het echt veel te makkelijk..

Hoe kan ik algebraïsch de top berekenen van een formule met als vorm 0,2x^2 (5-x) = 0?
Voor een kwadratische vergelijking nul-punten bepalen en dan de x van het midden zeg maar, maar dat werkt hier niet omdat de top niet in het midden ligt.. Wie kan hier een korte uitleg over geven?

Alvast bedankt!
  donderdag 24 maart 2011 @ 13:13:33 #136
75592 GlowMouse
l'état, c'est moi
pi_94552027
Kun je differentiëren?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94552467
Yes, maar ik ben op het moment mijn hele wiskunde aan het ophalen om binnenkort examen te doen als toelating voor een andere opleiding. In het boek van craats komt deze opdracht voor het hoofdstuk differentiëren, ik denk dus dat er een andere manier voor is dan de afgeleide bepalen hellingsgetal = 0.
pi_94552864
moet je nou een top berekenen of moet je een vergelijking oplossen? 0,2x^2 (5-x) = 0 is namelijk een vergelijking, geen functie...
pi_94557975
Sorry, de top van de functie f(x) = 0,2x^2 (5-x); nulpunten had ik zelf al bepaald dmv = 0, vandaar dat het er nog stond :)
  donderdag 24 maart 2011 @ 15:55:02 #140
75592 GlowMouse
l'état, c'est moi
pi_94558125
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94561617
quote:
De vraag was nu juist om het (locale) maximum van de functie te bepalen zonder gebruik van differentiaalrekening. De vragensteller kan trouwens beter even aangeven waar die opgave precies staat in het boek van Van de Craats, dan wordt wellicht duidelijker wat de bedoeling is.
pi_94612375
Weet iemand wat een "integraal" of een "constante van beweging" is van een (tweede orde) differentiaalvergelijking?
pi_94671527
Ik kom hier niet echt uit;

Topologie
Zij (X,d) een metrische ruimte. Stel er bestaat een aftelbare deelverzameling A bevat in X die dicht ligt in x. Laat zien dat X voldoet aan het tweede aftelbaarheidsaxioma.
- Dus laten zien dat er een aftelbare basis is voor X.

Ik weet al omdat het een metrische ruimte is dat X voldoet aan het eerste aftelbaarheidsaxioma, dus elke x in X heeft een aftelbare omgevingsbasis (namelijk B(x, 1/n) met n in N). Ik denk dat B(a,1/n) met a in A en n in N een goede basis vormt, maar ik weet nog niet helemaal waarom.
pi_94672943
Kan iemand mij helpen met extrapoleren? Ik weet bij god niet meer hoe dat moet...
---
  zondag 27 maart 2011 @ 15:50:16 #145
141665 IrishBastard
Is that right, Rambo?
pi_94675527
:W Ben ik weer :')

Ik kom niet uit de opgave:
Give a system of linear equations having as solutions the vectors that are orthogonal
to the following vectors:
Geef een systeem van lineaire vergelijkingen die als oplossing de vectoren hebben die orthagonaal zijn aan {1,2,3,-1,2} en {2,4,7,2,-1}.

Nou heb ik natuurlijk eerst de vectoren berekend die orthagonaal zijn aan de vectoren hierboven. Dit zijn volgens mij {1,2,3,-1,2} en {11/19, 1 3/19, 2 4/19, 3 8/19, -3 16/19}.

Maar hoe moet ik nou een stelsel vergelijkingen vinden dat daar op uit komt :?
  zondag 27 maart 2011 @ 15:56:50 #146
75592 GlowMouse
l'état, c'est moi
pi_94675737
{1,2,3,-1,2} staat niet loodrecht op {1,2,3,-1,2}. Loodrecht betekent: inproduct 0; ofwel een vector x staat loodrecht op c als cTx = 0.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  zondag 27 maart 2011 @ 16:07:54 #147
141665 IrishBastard
Is that right, Rambo?
pi_94676080
Oh, dus ik heb in dit geval geen juiste orthagonalen. Ga ik daar nog even achteraan. Maar stel dat ik die juiste orthagonale vectoren heb, hoe kom ik dan tot het stelsel lineaire vergelijkingen dat die vectoren als antwoord heeft :?
  zondag 27 maart 2011 @ 16:08:34 #148
75592 GlowMouse
l'état, c'est moi
pi_94676094
Ik geef je een vergelijking voor een vector c, bedenk maar wat het wordt bij twee vectoren c en d.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  zondag 27 maart 2011 @ 16:15:04 #149
141665 IrishBastard
Is that right, Rambo?
pi_94676290
Ik snap je niet? Ik dacht dat je bedoelde dat mijn orthagonale vectoren niet klopten. Orthagonaal is immers als het inproduct van beide vectoren 0 is. Volgens mij is het inproduct (bij nader inzien) van mijn twee 'orthagonale' vectoren niet 0, dus zijnze niet orthagonaal. Of sla ik nou compleet de plank mis :?
pi_94677497
quote:
1s.gif Op zondag 27 maart 2011 16:07 schreef IrishBastard het volgende:
Oh, dus ik heb in dit geval geen juiste orthagonalen. Ga ik daar nog even achteraan. Maar stel dat ik die juiste orthagonale vectoren heb, hoe kom ik dan tot het stelsel lineaire vergelijkingen dat die vectoren als antwoord heeft :?
Waaraan moet een vector voldoen om loodrecht op beide vectoren te staan?
Daar kun je gewoon vergelijkingen voor opstellen:
Neem vector (a,b,c,d,e), dan heb je twee inproducten...
.
.
Dus moet gelden: a= ..., b=,, etc.
Lukt het zo?
  zondag 27 maart 2011 @ 16:58:57 #151
141665 IrishBastard
Is that right, Rambo?
pi_94677636
Ik ga er zo mee verder, moest even fouten in mijn vorige opgave herstellen :') Bedankt, denk wel dat ik hier wat aan heb ;)
pi_94678282
Gegeven: pdf f(x,y) =18x(1-x)y^2 0<=y=<1 0<=x=<1
Vraag: Geef P(X*Y =< 0.5)
nu dacht ik X*Y =< 0,5 => y =< 1/(2x)
dus maak ik de dubbele integraal:
[0,1][0,1/(2x)] ( 18x(1-x)y^2 ) dydx = 6*[0,1] x(x-1)*1/(2x)^3 dx
en dat is helaas een divergente integraal. Ik zal dus denk ik een andere ondergrens moeten nemen dan 0 maar ik kan me niet voorstellen welke dat zou moeten zijn.
Iemand een tip?

[ Bericht 0% gewijzigd door Fingon op 27-03-2011 17:52:24 ]
Beneath the gold, bitter steel
  zondag 27 maart 2011 @ 17:38:07 #153
75592 GlowMouse
l'état, c'est moi
pi_94679047
Je bovengens 1/(2x) (haakjes!) is onjuist als x<0.5.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94679489
Hoe bedoel je, x kan toch best groter worden dan 0,5 zolang y maar compenseert met een kleinere waarde? Er staat nergens dat zowel y<0.5 als x< 0,5 moeten zijn.
Beneath the gold, bitter steel
  zondag 27 maart 2011 @ 17:58:26 #155
141665 IrishBastard
Is that right, Rambo?
pi_94679702
quote:
1s.gif Op zondag 27 maart 2011 16:55 schreef Siddartha het volgende:

[..]

Waaraan moet een vector voldoen om loodrecht op beide vectoren te staan?
Daar kun je gewoon vergelijkingen voor opstellen:
Neem vector (a,b,c,d,e), dan heb je twee inproducten...
.
.
Dus moet gelden: a= ..., b=,, etc.
Lukt het zo?
Een vector staat loodrecht op de ander als het inproduct 0 is. Dus in dit geval moet ik 2 vergelijkingen maken met bijvoorbeeld vector a = (a,b,c,d,e) en vector v1 = (1,2,3,-1,2) waarvoor geldt dat hun inproduct 0 is, dus:
a+2b+3c-d+2e=0

en voor a en vector v2 = (11/19, 1 3/19, 2 4/19, 3 8/19, -3 16/19) met inprduct 0, dus:
11/19a+1 3/19b+2 4/19c+3 8/19d-3 16/19e= 0
  zondag 27 maart 2011 @ 17:58:52 #156
141665 IrishBastard
Is that right, Rambo?
pi_94679714
Oh, en dat is natuurlijk weer in matrix vorm te zetten en op te lossen met vrije variabelen ^O^
  zondag 27 maart 2011 @ 18:04:05 #157
75592 GlowMouse
l'état, c'est moi
pi_94679893
quote:
1s.gif Op zondag 27 maart 2011 17:51 schreef Fingon het volgende:
Hoe bedoel je, x kan toch best groter worden dan 0,5 zolang y maar compenseert met een kleinere waarde? Er staat nergens dat zowel y<0.5 als x< 0,5 moeten zijn.
je hebt y<=1. Voor x=0.1 pak je nu [0,10] als interval voor y.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94682836

A, B zijn gelukt maar heb geen idee hoe C aan te pakken. Volgens mij niet al te lastig, maar ik zie het niet :(
  zondag 27 maart 2011 @ 19:38:36 #159
75592 GlowMouse
l'état, c'est moi
pi_94683324
quote:
1s.gif Op zondag 27 maart 2011 19:26 schreef Paganitzu het volgende:
[ afbeelding ]
A, B zijn gelukt maar heb geen idee hoe C aan te pakken. Volgens mij niet al te lastig, maar ik zie het niet :(
Staat er in je boek iets over de nulruimte?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94684119
Ja, ik deed het zo

Basis van V is {(1,0,2)T, (0,1,2)T}

v1Tx=0
v2Tx=0

levert

x1+2x3 = 0
x2+2x3 = 0

x3 = #
x1 = -2#
x2 = -2#

x = (-2,-2,1)T#

Hieruit zo dan volgen dat basis voor orthoplement van V (-2,-2,1)T is, maar dit lijkt me onlogisch aangezien de basis dan zou bestaan uit slechts 1 vector? :P
  zondag 27 maart 2011 @ 22:55:22 #161
75592 GlowMouse
l'état, c'est moi
pi_94694097
Dat is geen orthonormale basis aangezien de lengte van die vector 3 is. Waarom kan de dimensie geen 1 zijn?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94708742
quote:
1s.gif Op zondag 27 maart 2011 13:35 schreef Hanneke12345 het volgende:
Ik kom hier niet echt uit;

Topologie
Zij (X,d) een metrische ruimte. Stel er bestaat een aftelbare deelverzameling A bevat in X die dicht ligt in x. Laat zien dat X voldoet aan het tweede aftelbaarheidsaxioma.
- Dus laten zien dat er een aftelbare basis is voor X.

Ik weet al omdat het een metrische ruimte is dat X voldoet aan het eerste aftelbaarheidsaxioma, dus elke x in X heeft een aftelbare omgevingsbasis (namelijk B(x, 1/n) met n in N). Ik denk dat B(a,1/n) met a in A en n in N een goede basis vormt, maar ik weet nog niet helemaal waarom.
Een deelverzameling S van de verzameling open delen van X is een basis als voor elk open deel U in X en x in U er een V in S is met x in V en V een deelverzameling van U. Probeer dat maar eens te bewijzen voor S = {B(a, 1/n) : a in A, n in N}.
  maandag 28 maart 2011 @ 14:51:20 #163
283830 Rituals
Rediscovering the moment
pi_94714188
Ik heb zo'n vermoeden dat dit ontzettend makkelijke vragen zijn, maar ik kom er niet uit :'). Is er iemand die me kan helpen? Het zijn simpele berekeningen, er mag ook geen rekenmachine gebruikt worden.

1. Het cumulatieve risico op overgewicht voor de inactieve studenten is 20% (40/200). Het hierbij behorende 95%-betrouwbaarheidsinterval is:
1. (19% - 21%)
2. (14% - 26%)
3. (5% - 35%)
4. (1% - 50%)

2. Het cumulatieve risico op obesitas voor de studenten met overgewicht is 40% (40/100). Het hierbij horende 95%-betrouwbaarheidsinterval is om en nabij:
1. (37% - 43%)
2. (30% - 50%)
3. (10% - 70%)

3. Bij een steekproef blijkt het cumulatieve risico op overgewicht voor de 125 inactieve studenten 20% te zijn (25/125). Het hierbij horende 95%-betrouwbaarheidsinterval is om en nabij:
1. (5% -35%)
2. (13% - 27%)
3. (19% - 21%)

Kortom: drie keer dezelfde vraag, maar met andere getallen.

Antwoorden:
SPOILER
Om spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.
Your body. Your soul. Your rituals.
  maandag 28 maart 2011 @ 15:03:09 #164
75592 GlowMouse
l'état, c'est moi
pi_94714694
De variantie schat je overal met np(1-p) waarbij p de geschatte kans is. De n is bij elke anders.
Daarna kun je een normale benadering doen en kom je bij 1 op 0.2 +/- 1.96* sqrt(200*0.20*0.80)/200
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  maandag 28 maart 2011 @ 15:37:16 #165
331553 Schalks.
Ik wil eruit Houten Achtbaan 1
pi_94716247
Weet iemand waar ik de uitwerkingen van Calculus: Early Transcendentals 6e editie kan vinden?
and then...
  maandag 28 maart 2011 @ 15:47:05 #166
75592 GlowMouse
l'état, c'est moi
pi_94716669
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  maandag 28 maart 2011 @ 15:49:05 #167
283830 Rituals
Rediscovering the moment
pi_94716795
quote:
1s.gif Op maandag 28 maart 2011 15:03 schreef GlowMouse het volgende:
De variantie schat je overal met np(1-p) waarbij p de geschatte kans is. De n is bij elke anders.
Daarna kun je een normale benadering doen en kom je bij 1 op 0.2 +/- 1.96* sqrt(200*0.20*0.80)/200
Dankjewel!
Dat is de makkelijkste manier? Ik vind het nogal wat om dat uit je hoofd te doen namelijk. Of ligt dat aan mij? :+ Hoewel je het wel redelijk kunt schatten/afronden in je hoofd en dan wel ongeveer op het antwoord zult komen natuurlijk.
Your body. Your soul. Your rituals.
  maandag 28 maart 2011 @ 15:54:37 #168
75592 GlowMouse
l'état, c'est moi
pi_94717081
Je bedoelt zonder rekenmachine? Dan zijn het voor deze tijd wel ongebruikelijke vragen, maar niet onmogelijk :)
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  maandag 28 maart 2011 @ 15:58:29 #169
283830 Rituals
Rediscovering the moment
pi_94717303
Ja, zonder rekenmachine. Wel pen en papier, dat maakt het al makkelijker dan compleet uit je hoofd :P.
Your body. Your soul. Your rituals.
pi_94759227
quote:
1s.gif Op zondag 27 maart 2011 22:55 schreef GlowMouse het volgende:
Dat is geen orthonormale basis aangezien de lengte van die vector 3 is. Waarom kan de dimensie geen 1 zijn?
Bedankt :)
pi_94789596


Ik snap deze stap niet... iemand die hem wil uitleggen?

[ Bericht 0% gewijzigd door Dale. op 30-03-2011 00:15:15 ]
  dinsdag 29 maart 2011 @ 23:39:20 #172
75592 GlowMouse
l'état, c'est moi
pi_94789752
Als er links |y| zou staan, dan zou het logisch zijn.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94790435
Euh? Staat er toch?
pi_94791013
quote:
1s.gif Op dinsdag 29 maart 2011 23:35 schreef Dale. het volgende:
[ afbeelding ]

Ik snap deze stap niet... iemand die hem wil uitleggen?
Het klopt niet. De C in de eerste vergelijking is niet dezelfde als de C in de tweede vergelijking. En het minteken in het rechterlid van de tweede vergelijking, waar haal je dat vandaan?
  woensdag 30 maart 2011 @ 00:12:43 #175
75592 GlowMouse
l'état, c'est moi
pi_94791136
Ik zie links exp(|y|) ipv |y|.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94791213
quote:
1s.gif Op woensdag 30 maart 2011 00:09 schreef Riparius het volgende:

[..]

Het klopt niet. De C in de eerste vergelijking is niet dezelfde als de C in de tweede vergelijking. En het minteken in het rechterlid van de tweede vergelijking, waar haal je dat vandaan?
Die C is trouwens gewoon een constante van een intergraal
pi_94791232
quote:
1s.gif Op woensdag 30 maart 2011 00:12 schreef GlowMouse het volgende:
Ik zie links exp(|y|) ipv |y|.
Hmmm tjah sorry typ foutje moet natuurlijk e^(ln|y|) zijn.
pi_94792384
quote:
11s.gif Op woensdag 30 maart 2011 00:15 schreef Dale. het volgende:

[..]

Hmmm tjah sorry typ foutje moet natuurlijk e^(ln|y|) zijn.
En dat is hetzelfde als |y|. Blijft nog staan dat eC niet hetzelfde is als C en dat dat minteken niet klopt.
pi_94798782
quote:
1s.gif Op dinsdag 29 maart 2011 23:35 schreef Dale. het volgende:
[ afbeelding ]

Ik snap deze stap niet... iemand die hem wil uitleggen?
Soms is het onhandig om steeds E^C1 te schrijven, dus voer je een nieuwe constante in C=E^C1. Maar bij jou hebben ze niet expliciet onderscheid gemaakt tussen C1 en C. Als je C=-E^C1 laat zijn, waar C1 je oude constante is, dan klopt het.
pi_94814115
is het mogelijk om van de parametervoorstellingen:
mimetex.cgi?t%2B2t%2Fsqrt%281%2B4t%5E2%29
en
mimetex.cgi?t%5E2-1%2Fsqrt%281%2B4t%5E2%29
een cartesiche vergelijking te krijgen?

Het is btw de vergelijking die de punten op afstand 1 van de parabool y=x^2 beschrijft (maar alleen buiten de parabool), ik wil hem in een cartesische vergelijking hebben omdat ik het punt wil vinden waar een lijn het figuur snijdt (de lijn is op dat punt dus op afstand 1 van de parabool).

[ Bericht 13% gewijzigd door minibeer op 30-03-2011 16:54:08 ]
Finally, someone let me out of my cage
  woensdag 30 maart 2011 @ 17:07:22 #181
75592 GlowMouse
l'état, c'est moi
pi_94815068
Ik kom er niet uit. Maar kun je een punt (x,x²) niet projecteren op de lijn, en dan kijken wanneer de afstand tussen het punt en zijn projectie 1 is?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94815950
quote:
1s.gif Op woensdag 30 maart 2011 17:07 schreef GlowMouse het volgende:
Ik kom er niet uit. Maar kun je een punt (x,x²) niet projecteren op de lijn, en dan kijken wanneer de afstand tussen het punt en zijn projectie 1 is?
mmm, had ik niet aan gedacht, maar zou denk ik wel kunnen werken, even proberen :).
Thanks!
Finally, someone let me out of my cage
pi_94816959
ik denk toch niet dat dat werkt:
http://img151.imageshack.us/img151/6426/naamlooswr.png (copy/paste deze link)

(waarom doet het plaatje het nou niet?)
Finally, someone let me out of my cage
pi_94817330
quote:
1s.gif Op woensdag 30 maart 2011 16:45 schreef minibeer het volgende:
is het mogelijk om van de parametervoorstellingen:
[ afbeelding ]
en
[ afbeelding ]
een cartesiche vergelijking te krijgen?

Het is btw de vergelijking die de punten op afstand 1 van de parabool y=x^2 beschrijft (maar alleen buiten de parabool), ik wil hem in een cartesische vergelijking hebben omdat ik het punt wil vinden waar een lijn het figuur snijdt (de lijn is op dat punt dus op afstand 1 van de parabool).
Komt-ie:
1
2
3
4
sage: R.<t,u,x,y> = PolynomialRing(QQ, 4, order="lex")
sage: I = R.ideal(x - (t + 2 * t * u), y - (t^2 - u), u^2 * (1+4*t^2) - 1)
sage: I.groebner_basis()[-1]
x^6 + x^4*y^2 - 5/2*x^4*y - 47/16*x^4 - 2*x^2*y^3 + 3/8*x^2*y + 7/4*x^2 + y^4 - 5/2*y^3 + 9/16*y^2 + 5/2*y - 25/16
Niet iets wat ik graag met de hand zou willen uitrekenen.
pi_94817807
quote:
12s.gif Op woensdag 30 maart 2011 18:01 schreef thabit het volgende:

[..]

Komt-ie:

[ code verwijderd ]

Niet iets wat ik graag met de hand zou willen uitrekenen.
het ziet er eng uit ja, als ik het begreep was het vast nog enger :')
dat wordt dus maar iets anders proberen, bedankt iig.
Finally, someone let me out of my cage
pi_94818072
Die vierde regel gelijk aan 0 stellen geeft een vergelijking, misschien was dat nog niet helemaal duidelijk.
pi_94818266
quote:
2s.gif Op woensdag 30 maart 2011 18:24 schreef thabit het volgende:
Die vierde regel gelijk aan 0 stellen geeft een vergelijking, misschien was dat nog niet helemaal duidelijk.
oh ik was na het lezen van de eerste regel al afgehaakt :P
he, maar het is je dus wel gelukt :)
Heb je mathematica of iets dergelijks gebruikt?

[ Bericht 13% gewijzigd door minibeer op 30-03-2011 18:34:57 ]
Finally, someone let me out of my cage
pi_94818672
quote:
1s.gif Op woensdag 30 maart 2011 18:29 schreef minibeer het volgende:

[..]

oh ik was na het lezen van de eerste regel al afgehaakt :P
he, maar het is je dus wel gelukt :)
Heb je mathematica of iets dergelijks gebruikt?
Nee, Sage.
  woensdag 30 maart 2011 @ 19:46:17 #189
75592 GlowMouse
l'état, c'est moi
pi_94822724
Welke lijn heb je, en welke afstand pak je?

Het plaatje werkt niet omdat je imageshack gebruikt.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94824897
quote:
1s.gif Op woensdag 30 maart 2011 19:46 schreef GlowMouse het volgende:
Welke lijn heb je, en welke afstand pak je?

Het plaatje werkt niet omdat je imageshack gebruikt.
Oeps pardon, ik heb me even vergist, ik probeerde de afstand te berekenen via de normaal van de lijn, ik doe nog een poging... nevermind dus
Finally, someone let me out of my cage
pi_94830001
Over de vergelijking waar ik op uitkom zegt Wolfram dit.
de oplossingen voor x zijn de coordinaten op de parabool waar de afstand van de parabool tot de lijn y = ax + b gelijk is aan s.

(Ik heb gedaan wat GlowMouse voorstelde, ik heb een formule bedacht voor de afstand tussen de projectie van een punt (x, x2) en het punt zelf, en die op nul gesteld)
Dank voor de hulp, en nu maar hopen dat het klopt :).

[ Bericht 19% gewijzigd door minibeer op 30-03-2011 23:33:16 ]
Finally, someone let me out of my cage
  woensdag 30 maart 2011 @ 22:07:43 #192
75592 GlowMouse
l'état, c'est moi
pi_94831797
Bij de lijn y=0 verwacht ik telkens 2 oplossingen vanwege symmetrie, en ik zie er maar één.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94832403
quote:
1s.gif Op woensdag 30 maart 2011 22:07 schreef GlowMouse het volgende:
Bij de lijn y=0 verwacht ik telkens 2 oplossingen vanwege symmetrie, en ik zie er maar één.
er zijn 4 oplossingen, ik dacht dat het 1 groot plaatje was, maar het waren 4 kleine :)
Finally, someone let me out of my cage
pi_94837401
werkt toch niet helemaal goed. Op het punt dat de lijn zou snijden met de grafiek die op afstand 1 van de parabool ligt, is de afstand van de parabool tot de lijn kleiner dan 1, omdat de lijn de parabool snijdt. Nu kijk ik alleen naar de punten die op afstand 1 van de lijn liggen, niet naar punten die dichterbij liggen.
Finally, someone let me out of my cage
  donderdag 31 maart 2011 @ 09:30:35 #195
75592 GlowMouse
l'état, c'est moi
pi_94844004
Ik snap je vraag niet
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94895020
Goedemorgen allemaal,

Ik hoop dat iemand mij een antwoord kan geven op de volgende vraag. Ik vermoed dat het supereenvoudig is, maar ik zie het even niet... Het gaat om de productregel. Nou snap ik de regel zelf volledig en kan ik hem ook toepassen, alleen krijg ik niet het antwoord in de juiste vorm. Een voorbeeld aan de hand van de volgende pagina: http://www.math4all.nl/MathAdore/hb-b33-ex1b.html

Ik kom tot het volgende antwoord: P'(x) = (3x2 - 12x)(x4 - 1) + (x3 - 6x2)(4x3)

Vervolgens moet je de boel opschonen door haakjes weg te werken en kom je op dit antwoord: P'(x) = 7x6 - 36x5 - 3x2 + 12x.

Alleen ik krijg het niet voor elkaar om dat laatste antwoord te krijgen. :') Ik voel nu ontzettend dom, want volgens mij is dat toch basiskennis van wiskunde...
Op dinsdag 24 mei 2011 07:11 schreef Absurditeit het volgende:
Het werkt ook niet echt erotiserend als je de rookworst en saucijzenbroodjes op 45 meter afstand al ruikt, terwijl je langs de plastic laarzen en kledij loopt.
  vrijdag 1 april 2011 @ 11:15:34 #197
75592 GlowMouse
l'état, c'est moi
pi_94895125
(3x2 - 12x)(x4 - 1) = 3x6 - 3x2 - 12x5 + 12x

(x3 - 6x2)(4x3) = 4x6 - 24x5
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94896954
Waarom kan je de volgende polynoom op deze manier in de abc formule gebruiken?
-x^3 +1.7x^2 -0.8x +0.1
= (x-1)(-x^2 +0.7x -0.1)
en dan gebruiken ze het tweede deel als invoer voor de abc formule. Waarom kan dat zo?

Ik probeer het vervolgens bij deze polynoom toe te passen, maar het lukt me niet:
-x^3 +11x^2 -39x +45

(x-1)(-x^2 +10x -45) =/= x^3 +11x^2 -39x +45
  vrijdag 1 april 2011 @ 12:07:57 #199
75592 GlowMouse
l'état, c'est moi
pi_94897048
Als a*b=0 dan a=0 of b=0.

Omdat 1 geen oplossing is van -x^3 +11x^2 -39x +45 = 0, kun je x-1 niet zo makkelijk buiten haakjes halen.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94899141
Ah tuurlijk. Hoe zou je dit dan met de hand kunnen oplossen? We mogen namelijk geen rekenmachine gebruiken op het tentamen.
  vrijdag 1 april 2011 @ 13:16:43 #201
75592 GlowMouse
l'état, c'est moi
pi_94899469
Probeer wat gehele getallen rond 0 uit, op een tentamen vind je zo altijd wel een oplossing.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94899908
Hmm ok, hopelijk krijgen we niet hele moeilijke vergelijkingen dan ^O^
pi_94900192
quote:
1s.gif Op vrijdag 1 april 2011 11:15 schreef GlowMouse het volgende:
(3x2 - 12x)(x4 - 1) = 3x6 - 3x2 - 12x5 + 12x

(x3 - 6x2)(4x3) = 4x6 - 24x5
Hoe kom je op dit antwoord? Ik loop namelijk vast bij de -12x. Ik weet niet wat ik daar mee moet en deze materie is nog vrij nieuw voor me.

Vrij eenvoudige sommen zoals (2)(2X2) lukken me nog wel, maar zodra ze met -12X ofzoiets gaan gooien raak ik de weg kwijt.
Op dinsdag 24 mei 2011 07:11 schreef Absurditeit het volgende:
Het werkt ook niet echt erotiserend als je de rookworst en saucijzenbroodjes op 45 meter afstand al ruikt, terwijl je langs de plastic laarzen en kledij loopt.
pi_94900480
quote:
2s.gif Op vrijdag 1 april 2011 13:07 schreef .aeon het volgende:
Ah tuurlijk. Hoe zou je dit dan met de hand kunnen oplossen? We mogen namelijk geen rekenmachine gebruiken op het tentamen.
Jij wil kubische vergelijkingen met de hand gaan oplossen op je tentamen? Ga je maar vast verdiepen in Cardano. En vraag om extra tijd ...

Overigens is x = 5 een nulpunt van het polynoom -x3 + 11x2 - 39x + 45 dat je hierboven geeft.
  vrijdag 1 april 2011 @ 13:44:55 #205
75592 GlowMouse
l'état, c'est moi
pi_94900510
quote:
1s.gif Op vrijdag 1 april 2011 13:37 schreef Pipo1234 het volgende:

[..]

Hoe kom je op dit antwoord? Ik loop namelijk vast bij de -12x. Ik weet niet wat ik daar mee moet en deze materie is nog vrij nieuw voor me.

Vrij eenvoudige sommen zoals (2)(2X2) lukken me nog wel, maar zodra ze met -12X ofzoiets gaan gooien raak ik de weg kwijt.
http://mediatheek.thinkqu(...)kjes/page_uitleg.htm
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94900678
quote:
1s.gif Op vrijdag 1 april 2011 13:44 schreef Riparius het volgende:

[..]

Jij wil kubische vergelijkingen met de hand gaan oplossen op je tentamen? Ga je maar vast verdiepen in Cardano. En vraag om extra tijd ...
Haha, ik raad .aeon Glowmouse's tip aan.
pi_94901493
Nou als het zo veel werk is dan verwacht ik dat we vergelijkingen krijgen die óf x=1 als oplossing hebben en dan met de abc formule uit kunnen werken óf waarbij we inderdaad een aantal voor de hand liggende waardes moeten proberen.
pi_94905195
Oplossing van -x3 +11x2 -39x +45

1) -x3 +11x2 -39x +45 = -(x3 -11x2 +39x -45)

2) x3 -11x2 +39x -45 = (x+a)(x+b)(x+c)

3) Uitwerken haakjes van (x+a)(x+b)(x+c) levert al snel een vergelijking, waar je de coëfficiënten van x3 -11x2 +39x -45 uitgedrukt in vergelijkingen met a,b,c vindt, die je vervolgens kan oplossen.

Uiteindelijk kom je op de vergelijking: -(x-3)(x-3)(x-5) = -(x-5)(x-3)2
[img]http://i.minus.com/ibnbBZVlYCvsZI.gif[/img]
  vrijdag 1 april 2011 @ 15:54:01 #209
75592 GlowMouse
l'état, c'est moi
pi_94905479
Hoe kom jij van

a+b+c = 11
ab+ac+bc = 39
abc = 45

op a=b=3, c=5?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94911568
a+b+c = -11
ab+ac+bc = 39
abc = -45

Door substitutie, maar dan wordt het wel een bitch van een vergelijking.

Aangezien deze vraag zonder rekenmachine op te lossen moet zijn kun je er wel van uit gaan dat het om gehele getallen gaat (of eenvoudige breuken).

In het geval dat a=b=c dan wordt abc=45=a3 geldt a = b = c = -451/3
Echter voldoet dit niet aan a + b + c = 3a = 3 * -451/3 =/= -45

In het geval dat 2 van de 3 variabelen aan elkaar gelijk zijn (bijv. a=b) en alle 3 gehele getallen zijn er maar een paar mogelijkheden:
a b c
3 3 -5
1 1 -45
-1 -1 -45
-3 -3 -5

deze vier mogelijkheden toetsen aan a+b+c = -11 en je houdt enkel a=b=-3 en c=-5 over. Ter controle ook nog even toetsen aan ab + ac + bc = 39
[img]http://i.minus.com/ibnbBZVlYCvsZI.gif[/img]
pi_94931743
quote:
1s.gif Op woensdag 30 maart 2011 23:43 schreef minibeer het volgende:
werkt toch niet helemaal goed. Op het punt dat de lijn zou snijden met de grafiek die op afstand 1 van de parabool ligt, is de afstand van de parabool tot de lijn kleiner dan 1, omdat de lijn de parabool snijdt. Nu kijk ik alleen naar de punten die op afstand 1 van de lijn liggen, niet naar punten die dichterbij liggen.
o, ik zie je post nu pas (ik neem aan dat je reageerde op mijn post...?). Het lukte niet, ik probeerde uit te leggen waarom, maar dat lukte blijkbaar niet :'). Anyway, ik kan het niet helderder uitleggen, dus laat maar.

[ Bericht 0% gewijzigd door minibeer op 02-04-2011 01:59:47 ]
Finally, someone let me out of my cage
pi_94932093
quote:
1s.gif Op vrijdag 1 april 2011 18:44 schreef Nelis89 het volgende:
In het geval dat 2 van de 3 variabelen aan elkaar gelijk zijn (bijv. a=b) en alle 3 gehele getallen zijn er maar een paar mogelijkheden...
Ah, handig :). Maar als je er niet van uit mag gaan dat twee of meer variabelen aan elkaar gelijk zijn is er geen beginnen aan, right?
Finally, someone let me out of my cage
pi_94935100
quote:
1s.gif Op vrijdag 1 april 2011 18:44 schreef Nelis89 het volgende:
a+b+c = -11
ab+ac+bc = 39
abc = -45

Door substitutie, maar dan wordt het wel een bitch van een vergelijking.

Aangezien deze vraag zonder rekenmachine op te lossen moet zijn kun je er wel van uit gaan dat het om gehele getallen gaat (of eenvoudige breuken).

In het geval dat a=b=c dan wordt abc=45=a3 geldt a = b = c = -451/3
Echter voldoet dit niet aan a + b + c = 3a = 3 * -451/3 =/= -45

In het geval dat 2 van de 3 variabelen aan elkaar gelijk zijn (bijv. a=b) en alle 3 gehele getallen zijn er maar een paar mogelijkheden:
a b c
3 3 -5
1 1 -45
-1 -1 -45
-3 -3 -5

deze vier mogelijkheden toetsen aan a+b+c = -11 en je houdt enkel a=b=-3 en c=-5 over. Ter controle ook nog even toetsen aan ab + ac + bc = 39
Lijkt me allemaal wat omslachtig. Als er een rationaal nulpunt is, dan moet dat geheel zijn en een deler van de constante coëfficiënt. Dus je hoeft maar weinig dingen uit te proberen.
pi_94938034
Ik snap het volgende even niet: F:D->Rm
Neem aan dat voor iedere open U in Rm geldt dat f -1(U) open is in Rn.

Dan pakken ze a uit D en een epsilon en zeggen ze:
"Dan is volgens het gegeven f -1(Be(f(a))) een open deel
van Rn. (Met Be bedoel ik 'bolletje'/omgeving om f(a) met straal epsilon)

Maar Be(f(a)) is toch niet open?
  zaterdag 2 april 2011 @ 12:38:23 #215
75592 GlowMouse
l'état, c'est moi
pi_94938138
Is het voor het bewijs noodzakelijk dat ze de rand van de epsilonbol meenemen?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94938278
Ik snap het al, bedankt.

[ Bericht 59% gewijzigd door Siddartha op 02-04-2011 13:13:06 ]
pi_94977523
Een kleine vraag over de standaardafwijking. Die wordt in het boek als volgt gedefinieerd:

quote:
Gegeven is een bestand van in totaal n data. Stel dat
er vier verschillende waarden zijn: x1, x2, x3, x4 met
frequenties f1, f2, f3, f4. Dan geldt:
• f1 + f2 + f3 + f4 = n
• het gemiddelde van x = a ⋅ (f1⋅x1 + f2⋅x2 + f3⋅x3 + f4⋅x4)
• de standaardafwijking σx of Sd(x) = √(f1⋅(x1-x)2+f2⋅(x2-x)2+f3⋅(x3-x)2+f4⋅(x4-x)2)
Vervolgens is er een opgave waarvan je de standaardafwijking van deze lijst moet uitrekenen:
(2, 3, 3.5, 4, 4, 4.5, 4.5, 5, 5, 5, 5.5, 5.5, 5.5, 6, 6, 6, 6, 6, 6.5, 6.5, 6.5, 7, 7, 7, 7.5, 7.5, 8, 8.5, 8.5, 9, 10)

Ik kom met handmatig uitrekenen uit op:
gemiddelde = 6
standaardafwijking = √(97.5)

Het gemiddelde klopt, maar de standaardafwijking moet rond de 1.75 liggen, zowel volgens mijn gr als volgens het antwoordenboekje. Het lijkt me dus dat ik iets fout doe, maar ik snap echt niet hoe je hierop zou kunnen uitkomen.
Finally, someone let me out of my cage
pi_94977650
[img]http://i.minus.com/ibnbBZVlYCvsZI.gif[/img]
pi_94977909
Dankje, nou kom ik wel uit :), dom dat ik daar niet aan gedacht had...
klopt dan de definitie in het boek niet, of is de standaardafwijking wat anders dan ?

Dan neem ik aan dat ze de 1/n vergeten zijn in de definitie.
Finally, someone let me out of my cage
  zondag 3 april 2011 @ 15:16:37 #220
75592 GlowMouse
l'état, c'est moi
pi_94979315
De definitie zoals die daar staat, klopt inderdaad niet; 1.7423 is wel het juiste antwoord.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94984259
Ik heb een recursierelatie x(n) = A x(n-1), met A een 4×4 matrix (waarvan alle elementen niet negatief zijn en kleiner gelijk 1) en x(n)=(x1(n),...,x4(n)). Er wordt gevraagd de evenwichtsoplossing te bepalen. Wat kan hiermee bedoeld worden?
  zondag 3 april 2011 @ 17:13:56 #222
75592 GlowMouse
l'état, c'est moi
pi_94984314
Een x zodat x = x(n) = x(n-1). Zoals je hem stelt, is de oplossing vaak niet uniek.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94984527
Kan wel zijn, er wordt eigenlijk ook een evenwichtsoplossing gevraagd.

Het vreemde is echter dat in mijn matrix A nog onbekenden zitten. Even proberen...
  zondag 3 april 2011 @ 17:49:27 #224
75592 GlowMouse
l'état, c'est moi
pi_94985705
Is het geen stochastische matrix?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_94987824
quote:
1s.gif Op zondag 3 april 2011 17:49 schreef GlowMouse het volgende:
Is het geen stochastische matrix?
Er staan wel kansen in maar de kolommen (of rijen) tellen niet op tot 1... (behalve als si=0 of 1)



Met s1,...,s4 onbekende kansen en I een constante.

Waarschijnlijk gewoon een kwestie van een stelsel oplossen.

[ Bericht 8% gewijzigd door BasementDweller op 03-04-2011 19:31:12 ]
pi_94997725
Andere opgave:
quote:
Zij Y,Y_1,Y_2,... discrete random variables in Z. Laat zien dat Y_n convergeert in verdeling (als n \to\infty) naar Y d.e.s.d.a. p_{Y_n} (k) convergeert naar p_Y (k) voor iedere k.
Maar de definitie van convergeren in verdeling is dat F_{X_n} (x) --> F_X(x) als n-->oneindig voor alle x waar F_X continu is. Dan zou ik zeggen dat de stelling trivialiter waar is omdat de kansmassafunctie discreet is en dus niet continu.
Goed, dan zou je die functie kunnen uitbreiden zodat die continu wordt. Maar dan hoef je toch verder niks meer te laten zien? :?
  zondag 3 april 2011 @ 22:26:16 #227
75592 GlowMouse
l'état, c'est moi
pi_95001910
Ik denk idd dat je niet die s'en moet gaan invullen.

F is een cdf, p is een pdf, dus zo triviaal is het allemaal niet voor het continue geval.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_95013411
Ik moet bewijzen dat als:
Als g1,g2,... een rijtje punten in G is, dat convergeert naar een punt a in Rn, dan zit a in G.
Dat G dan gesloten is in Rn.

Dat is vrij logisch, maar hoe zit dat dan met G= Rn?
  maandag 4 april 2011 @ 09:56:06 #229
75592 GlowMouse
l'état, c'est moi
pi_95013612
Dan is G ook gesloten.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_95013879
quote:
1s.gif Op maandag 4 april 2011 09:56 schreef GlowMouse het volgende:
Dan is G ook gesloten.
Maar Rn is toch open? Of is het beide, net als de lege verzameling?
  maandag 4 april 2011 @ 10:08:43 #231
75592 GlowMouse
l'état, c'est moi
pi_95013940
allebei ja :)
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_95014017
quote:
1s.gif Op maandag 4 april 2011 10:08 schreef GlowMouse het volgende:
allebei ja :)
Apart, bij de lege verzameling kan ik het me wel voorstellen omdat het puur een 'handige definitie' is.Maar Rn heeft dus ook echt twee eigenschappen waardoor het open en gesloten is.
Bedankt!
pi_95019915
Even een vraagje, het is een Natuurkundige formule maar mijn vraag is volgens mij wiskundig op te lossen. Ik ben wiskundig niet goed en het is vast heeel simpel maar snap nu niet hoe ze hier op komen:

1/2mv^2 = 3/2kT

T = mv^2 / 3k

waarom valt die 1/2 nu weg?
AJAX AMSTERDAM!
pi_95020365
quote:
1s.gif Op maandag 4 april 2011 13:17 schreef bloodysunday het volgende:
Even een vraagje, het is een Natuurkundige formule maar mijn vraag is volgens mij wiskundig op te lossen. Ik ben wiskundig niet goed en het is vast heeel simpel maar snap nu niet hoe ze hier op komen:

1/2mv^2 = 3/2kT

T = mv^2 / 3k

waarom valt die 1/2 nu weg?
de hele formule is omgeschreven he :)
Beide kanten zijn gedeeld door 3/2k
~Si vis amari, ama~
pi_95020712
quote:
1s.gif Op maandag 4 april 2011 13:29 schreef FedExpress het volgende:

[..]

de hele formule is omgeschreven he :)
Beide kanten zijn gedeeld door 3/2k
Ja logisch.

Je krijgt T = 1/2 mv^2 / 3/2 k
waardoor die /2 wegvalt en je dus T=1mv^2 / 3k overhoud.= T=mv^2 / 3k
AJAX AMSTERDAM!
pi_95028352
Het gebied D is gedefinieerd als



Nu moet ik dus een dubbele integraal opstellen. Alleen weet ik niet zeker of ik me grenzen correct heb uitgerekend. Visueel gezien praten we dus over het volgende gebied:


Nu heb ik de volgende grenzen uitgerekend voor me dubbele integraal (omgezet naar poolcoördinaten):
De hoek tussen de lijn en de y-as is 60 graden.
De hoek tussen de lijn en de y-as is 30 graden.

Me eerste integraal heeft dus van pi/3 tot pi/6.

Nu wordt en hieruit volgt dus dat . De positieve antwoorden hebben we weggestreept, we zitten immers in het 3de kwadrant. Dus..... mijn integraal wordt...



Nu is mijn vraag klopt dit :P
pi_95031482
quote:
1s.gif Op maandag 4 april 2011 10:12 schreef Siddartha het volgende:

[..]

Apart, bij de lege verzameling kan ik het me wel voorstellen omdat het puur een 'handige definitie' is.Maar Rn heeft dus ook echt twee eigenschappen waardoor het open en gesloten is.
Bedankt!
Het complement van een gesloten verzameling is open (en andersom). Dus het complement van een open en gesloten verzameling is dus ook open en gesloten. Het complement van de lege verzameling in R^n (=R^n) is dus ook open en gesloten.
pi_95031737
quote:
5s.gif Op maandag 4 april 2011 16:44 schreef Dale. het volgende:
Het gebied D is gedefinieerd als

[ afbeelding ]

Nu moet ik dus een dubbele integraal opstellen. Alleen weet ik niet zeker of ik me grenzen correct heb uitgerekend. Visueel gezien praten we dus over het volgende gebied:
[ afbeelding ]

Nu heb ik de volgende grenzen uitgerekend voor me dubbele integraal (omgezet naar poolcoördinaten):
De hoek tussen de lijn [ afbeelding ] en de y-as is 60 graden.
De hoek tussen de lijn [ afbeelding ] en de y-as is 30 graden.

Me eerste integraal heeft dus van pi/3 tot pi/6.

Nu [ afbeelding ] wordt [ afbeelding ] en hieruit volgt dus dat [ afbeelding ]. De positieve antwoorden hebben we weggestreept, we zitten immers in het 3de kwadrant. Dus..... mijn integraal wordt...

[ afbeelding ]

Nu is mijn vraag klopt dit :P
Volgens mij klopt het wel redelijk, alleen waar komt die r² vandaan in de laatste integraal? Integreer je dan niet eigenlijk de functie f(x,y)=x²+y²? En de hoek meet je t.o.v. de positieve x-as en niet de y-as.
pi_95033094
quote:
14s.gif Op maandag 4 april 2011 17:58 schreef BasementDweller het volgende:

[..]

Het complement van een gesloten verzameling is open (en andersom). Dus het complement van een open en gesloten verzameling is dus ook open en gesloten. Het complement van de lege verzameling in R^n (=R^n) is dus ook open en gesloten.
Ah, zo had ik het nog niet bekeken. Duidelijk!
pi_95033964
quote:
1s.gif Op maandag 4 april 2011 18:05 schreef BasementDweller het volgende:

[..]

Volgens mij klopt het wel redelijk, alleen waar komt die r² vandaan in de laatste integraal? Integreer je dan niet eigenlijk de functie f(x,y)=x²+y²? En de hoek meet je t.o.v. de positieve x-as en niet de y-as.
Die r² komt van x²+y² = r² in poolcoordinaten, dus ik geloof inderdaad dat ik de functie x²+y² integreer, maar de grenzen zijn toch correct afgebakend?

"En de hoek meet je t.o.v. de positieve x-as en niet de y-as." oh ja dan moeten de onder en boven grens omgedraaid worden.
  maandag 4 april 2011 @ 18:55:52 #241
75592 GlowMouse
l'état, c'est moi
pi_95034245
Ik zou juist een hoek groter dan pi verwachten.oh r is negatief.

Ik zou hem omschrijven naar een hoek groter dan pi en met positieve r. Nu raak je in verwarring.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_95034690
quote:
1s.gif Op maandag 4 april 2011 18:55 schreef GlowMouse het volgende:
Ik zou juist een hoek groter dan pi verwachten.oh r is negatief.

Ik zou hem omschrijven naar een hoek groter dan pi en met positieve r. Nu raak je in verwarring.
Hmmmm? U bedoelt?
  maandag 4 april 2011 @ 19:37:04 #243
75592 GlowMouse
l'état, c'est moi
pi_95036817
Echte poolcoördinaten in plaats van zo'n probeersel waarvan je zelf in de war raakt. En bij poolcoördinaten geldt r>=0.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_95037593
quote:
1s.gif Op maandag 4 april 2011 19:37 schreef GlowMouse het volgende:
Echte poolcoördinaten in plaats van zo'n probeersel waarvan je zelf in de war raakt. En bij poolcoördinaten geldt r>=0.
Ah zo bedoel je. Ja heb je gelijk even omzetten :)
pi_95041695
quote:
Bij een projectie van R3 naar R2 gaat de vector (1,0,0) naar (1,0); de vector (0,1,0) naar (0.5,0.5); en de vector (0,0,1) naar (0,1).
Bepaal de matrix van deze projectie (mbt. de standaardbases).
Ik snap deze vraag niet echt. Is dat gewoon ((1,0),(0.5,0.5),(0,1))? Of bedoelen ze (x+0.5y,z+0.5y)?
pi_95050645
quote:
2s.gif Op maandag 4 april 2011 20:43 schreef .aeon het volgende:

[..]

Ik snap deze vraag niet echt. Is dat gewoon ((1,0),(0.5,0.5),(0,1))? Of bedoelen ze (x+0.5y,z+0.5y)?
Dat lijkt me inderdaad gewoon ((1,0),(0.5,0.5),(0,1)) te zijn. Een matrixprojectie is immers een vermenigvuldiging met een matrix, niet invullen van een matrix.
The biggest argument against democracy is a five minute discussion with the average voter.
pi_95060763
Stel ik heb een functie f :Rn-> Rm en ik moet laten zien dat die differentieerbaar is. Is het dan voldoende om te laten zien dat de functie uit samenstellingen van differentieerbare functies bestaat?
Bijvoorbeeld:

f:= (sin(x)+4ye3xy,cos(x))

Dan: f is differentieerbaar omdat sin(x), eu, u+v, uv, u(v) en cos(x) differentieerbaar zijn (met u en v als differentieerbare functies).
  dinsdag 5 april 2011 @ 10:43:55 #248
75592 GlowMouse
l'état, c'est moi
pi_95061165
Let ook op bereik en domein.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_95061671
quote:
1s.gif Op dinsdag 5 april 2011 10:43 schreef GlowMouse het volgende:
Let ook op bereik en domein.
Ja, dat moet wel lukken. Ik kwam in de war door de notatie (partiele afgeleiden en delen van de functie hebben dezelfde fi notatie), dus vroeg ik het maar even na.
pi_95078433
Ik loop vast met het bepalen van de determinant van de volgende matrix:
pi_95078536
Oh laat maar, ik kan het gewoon met Det(A) = aei+bfg+cdh-ceg-afh-bdi doen :@
pi_95083349
Ik heb het gebied:



2 cirkels waarbij de laatste de eerste overlapt. Nu moet ik het gebied bepalen van cirkel 1 dat niet overlapt wordt. De halve maan zoals in de figuur.

SPOILER
Om spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.
Nu dacht ik eerst ik stel de integralen op van beide cirkels en trek de grote van de kleine af... alleen trek ik dan natuurlijk veel te veel af. Je moet namelijk alleen het gebied dat overlapt wordt aftrekken, de rest niet. Volgens mij moet ik 't dus anders aanpakken, en gewoon de grenzen manipuleren van de integraal van de kleine cirkel. Echter hoe?
pi_95084322
Ik weet het zo ook niet. Misschien kan je gebruiken dat de kleine cirkel door het middelpunt van de grote gaat en dat hij de grote snijdt in (0,2) en (2,0).
pi_95085123
quote:
1s.gif Op dinsdag 5 april 2011 19:27 schreef Dale. het volgende:
Ik heb het gebied:

[ afbeelding ]

2 cirkels waarbij de laatste de eerste overlapt. Nu moet ik het gebied bepalen van cirkel 1 dat niet overlapt wordt. De halve maan zoals in de figuur.

SPOILER
Om spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.
Nu dacht ik eerst ik stel de integralen op van beide cirkels en trek de grote van de kleine af... alleen trek ik dan natuurlijk veel te veel af. Je moet namelijk alleen het gebied dat overlapt wordt aftrekken, de rest niet. Volgens mij moet ik 't dus anders aanpakken, en gewoon de grenzen manipuleren van de integraal van de kleine cirkel. Echter hoe?
Ik zou dit elementair aanpakken, dan kom ik voor de oppervlakte van het deel van de rode cirkelschijf dat niet overdekt wordt door de blauwe cirkelschijf op 2*pi + 2. Via integraalrekening wordt het een stuk lastiger.

Edit: fout hersteld.

[ Bericht 0% gewijzigd door Riparius op 05-04-2011 20:14:40 ]
pi_95085161
Ja er staat als hint gegeven dat:



in poolcoördinaten. Dus denk dat ik gewoon weer 1 integraal krijg waarbij de grenzen functies zijn van r of theta.

quote:
1s.gif Op dinsdag 5 april 2011 19:55 schreef Riparius het volgende:

[..]

Ik zou dit elementair aanpakken, dan kom ik voor de oppervlakte van het deel van de rode cirkelschijf dat niet overdekt wordt door de blauwe cirkelschijf op 5/2*pi + 2. Via integraalrekening wordt het een stuk lastiger.
Had ik al gezegd dat het moet via integraalrekening :P en poolcoordinaten?
pi_95086109
quote:
1s.gif Op dinsdag 5 april 2011 19:55 schreef Dale. het volgende:
Ja er staat als hint gegeven dat:

[ afbeelding ]
Staat die hint er echt precies zo? {x,y | (x-1)² + (y-1)² = 2} is gewoon een cirkel met straal r=wortel(2). Dus waar staat die r dan in dit geval voor?
pi_95087764
quote:
1s.gif Op dinsdag 5 april 2011 20:10 schreef BasementDweller het volgende:

[..]

Staat die hint er echt precies zo? {x,y | (x-1)² + (y-1)² = 2} is gewoon een cirkel met straal r=wortel(2). Dus waar staat die r dan in dit geval voor?
Ja me schrijve wijze is misschien een beetje ongelukkig... Maar wat ik bedoel (en er dus mee bedoelt wordt) is dat je (x-1)² + (y-1)² = 2 kunt schrijven als r = 2(cos(theta) + sin(theta)) in poolcoördinaten. Vul maar in voor x = r*cos(theta) en y = r*sin(theta)...

http://www.wolframalpha.c(...)9+-+1%29^2+-+2+%3D+0

dan krijg je dat bovenstaande eruit.
pi_95093107
quote:
Op dinsdag 5 april 2011 19:55 schreef Dale. het volgende:
Ja er staat als hint gegeven dat:

[ afbeelding ]

in poolcoördinaten. Dus denk dat ik gewoon weer 1 integraal krijg waarbij de grenzen functies zijn van r of theta.

[..]

Had ik al gezegd dat het moet via integraalrekening :P en poolcoordinaten?
Nee. Maar je kunt het jezelf ook dan gemakkelijker maken als je bedenkt dat de oppervlakte van het gevraagde vlakdeel gelijk is aan de oppervlakte van de rode cirkelschijf verminderd met de oppervlakte van de blauwe cirkelschijf en dat weer vermeerderd met het deel van de blauwe cirkelschijf dat zich buiten de rode cirkelschijf bevindt. Daarmee is het vraagstuk gereduceerd tot de bepaling van de oppervlakte van het blauwe halve maantje.

De oppervlakte van het blauwe halve maantje is:

0π/2 ½∙((2∙cos θ + 2∙sin θ)2 - 22)∙dθ

En dit kunnen we vereenvoudigen tot:

0π/2 2∙sin 2θ∙dθ = [-cos 2θ]0π/2 = 1-(-1) = 2.

De oppervlakte van het gevraagde vlakdeel wordt dus:

4π - 2π + 2 = 2π + 2.

[ Bericht 0% gewijzigd door Riparius op 05-04-2011 22:19:47 ]
pi_95103309
Ik lees net dat er tot in de 19e eeuw aan de juistheid van het gegeven dat de som van de binnenhoeken van een driehoek 180 graden is werd getwijfeld. Er is toch een heel simpel bewijs voor?
(niet echt ontopic, ik weet het maar ik vroeg het me gewoon af)
Finally, someone let me out of my cage
pi_95103562
quote:
1s.gif Op woensdag 6 april 2011 00:51 schreef minibeer het volgende:
Ik lees net dat er tot in de 19e eeuw aan de juistheid van het gegeven dat de som van de binnenhoeken van een driehoek 180 graden is werd getwijfeld. Er is toch een heel simpel bewijs voor?
(niet echt ontopic, ik weet het maar ik vroeg het me gewoon af)
Het bewijs daarvoor hangt samen met (resp.deze uitspraak is equivalent met) het zogeheten parallellenpostulaat oftewel het vijfde postulaat van Euclides. Men heeft lang gedacht dat dit uit de vier andere postulaten te bewijzen zou zijn, maar dat is niet zo.
pi_95105665
quote:
1s.gif Op woensdag 6 april 2011 00:58 schreef Riparius het volgende:

[..]

Het bewijs daarvoor hangt samen met (resp.deze uitspraak is equivalent met) het zogeheten parallellenpostulaat oftewel het vijfde postulaat van Euclides. Men heeft lang gedacht dat dit uit de vier andere postulaten te bewijzen zou zijn, maar dat is niet zo.
Ah, dat zegt me wat meer, bedankt :).
Finally, someone let me out of my cage
pi_95118455
Even een algemene vraag. Het is mij totaal niet duidelijk hoe het nou zit namelijk. Wiskunde A en B op het VWO, lopen die vakken nou parallel aan elkaar of zijn het echte losse vakken? Ik wil namelijk een betastudie gaan doen en moet daar B voor hebben. Maar om een cursus te kunnen volgen moet ik eigenlijk Wiskunde A van het VWO of B van de Havo hebben en dat heb ik allebei niet. En nu weet ik dus niet of het echt belangrijk is om A te hebben of dat het alleen een vooropleidingseis is.
Op dinsdag 24 mei 2011 07:11 schreef Absurditeit het volgende:
Het werkt ook niet echt erotiserend als je de rookworst en saucijzenbroodjes op 45 meter afstand al ruikt, terwijl je langs de plastic laarzen en kledij loopt.
  woensdag 6 april 2011 @ 14:08:36 #263
302853 themole
graaft totaal door.
pi_95118637
quote:
1s.gif Op woensdag 6 april 2011 14:04 schreef Pipo1234 het volgende:
Even een algemene vraag. Het is mij totaal niet duidelijk hoe het nou zit namelijk. Wiskunde A en B op het VWO, lopen die vakken nou parallel aan elkaar of zijn het echte losse vakken? Ik wil namelijk een betastudie gaan doen en moet daar B voor hebben. Maar om een cursus te kunnen volgen moet ik eigenlijk Wiskunde A van het VWO of B van de Havo hebben en dat heb ik allebei niet. En nu weet ik dus niet of het echt belangrijk is om A te hebben of dat het alleen een vooropleidingseis is.
Wiskunde B = differentieren, integreren, primitiveren, bewijzen enz.
Wiskunde A = kansberekening en simpelere algebra.
Zit nogal een verschil in. :P
Niet altijd serieus
pi_95118751
quote:
14s.gif Op woensdag 6 april 2011 14:08 schreef themole het volgende:

[..]

Wiskunde B = differentieren, integreren, primitiveren, bewijzen enz.
Wiskunde A = kansberekening en simpelere algebra.
Zit nogal een verschil in. :P
Oké. Ik ben bezig geweest met Wiskunde A en vond dat eerlijk gezegd een beetje saai, aangezien daar veel te veel kansberekening en statistiek in zit. Dus eigenlijk is B ook veel complexer (en dus leuker).

Alleen vraag ik me dan nog wel af of men normaal op het VWO beide vakken krijgt of maar één van de twee?
Op dinsdag 24 mei 2011 07:11 schreef Absurditeit het volgende:
Het werkt ook niet echt erotiserend als je de rookworst en saucijzenbroodjes op 45 meter afstand al ruikt, terwijl je langs de plastic laarzen en kledij loopt.
  woensdag 6 april 2011 @ 14:17:00 #265
75592 GlowMouse
l'état, c'est moi
pi_95119010
Je kunt het beste wiskunde B (en D) pakken. Als A of C vereist is, kom je daar met B ook binnen.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_95119262
quote:
1s.gif Op woensdag 6 april 2011 14:17 schreef GlowMouse het volgende:
Je kunt het beste wiskunde B (en D) pakken. Als A of C vereist is, kom je daar met B ook binnen.
Ik weet in ieder geval dat ik B moet hebben. Ik wil namelijk een betastudie doen waar het gewoon voor vereist is. Wat houdt D eigenlijk in?

Maar als ik goed begrijp is Wiskunde B dus een ander richting/profiel dan A?
Op dinsdag 24 mei 2011 07:11 schreef Absurditeit het volgende:
Het werkt ook niet echt erotiserend als je de rookworst en saucijzenbroodjes op 45 meter afstand al ruikt, terwijl je langs de plastic laarzen en kledij loopt.
  woensdag 6 april 2011 @ 14:26:07 #267
75592 GlowMouse
l'état, c'est moi
pi_95119375
A is veel simpeler. Ik vermoed dat de onderwerpen anders zijn omdat je anders zou kunnen zien hoe groot het verschil is, en mensen zich dan afvragen waarom er toch hetzelfde aantal uren voor staat.

http://nl.wikipedia.org/w(...)wde_Tweede_Fase_2007
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  woensdag 6 april 2011 @ 19:25:54 #268
302853 themole
graaft totaal door.
pi_95132156
D is moeilijkere A + extra B stof. Kan handig zijn voor sommige studies. :)
Niet altijd serieus
pi_95132932
quote:
14s.gif Op woensdag 6 april 2011 19:25 schreef themole het volgende:
D is moeilijkere A + extra B stof. Kan handig zijn voor sommige studies. :)
D is toch alleen een uitbreiding van B, niet van A?
pi_95143963
Ik heb hier misschien niet echt een wiskundig probleem, maar ik vermoed dat er een wiskundige reden achter zit...

In Matlab krijg ik het volgende:
1.0157 = atan((653-66) / (430-66))
Terwijl ik in Python dit krijg:
0.99149... = atan(float((653-66))/(430-66))

als ik 653 door 623 vervang en 430 door 420, dan krijg ik bij matlab 1.0046 eruit en python 0.7853... het is me een raadsel waarom ze zo gigantisch verschillen (ik heb geprobeerd met wat andere floats te kijken..)

Ik wil heel graag de Matlab antwoord in Python terugkrijgen, aangezien dit noodzakelijk is om punten te kunnen roteren.

// Edit:
Zucht, eerst kwartier lang allerlei stuff probere en stuff opzoeken. Vervolgens blijkt er gewoon een typo ergens te zitten, tot nu gaat het weer goed. :')
pi_95145471
Tijd voor een bakkie koffie, gast.
pi_95161424
Is er in de analyse een soort omgekeerde submersiestelling, die zegt dat een levelset van een functie g geen deelvariëteit is als g geen submersie is?
pi_95164944
Ja, als een verzameling door gladde vergelijkingen wordt gegeven dan zijn de singuliere punten die punten waar de Jacobi-matrix een verkeerde rang heeft.
pi_95175092
Bedoel je met 'verkeerde rang' dat als g : U->R^p met U een d.v. van R^n dat de matrix Dg een rang heeft < p?
pi_95175655
Niet per se. Het kan namelijk zijn dat het beeld van g lagere dimensie heeft dan p en dat dan niveauverzameling nog altijd differentieerbaar is. Het is dus niet automatisch zo dat als het geen submersie is dat het dan geen differentieerbare variëteit is, de stelling is dus ook niet volledig omkeerbaar.

Om dit soort dingen volledig goed te formuleren is het beter in een algebraïsche context te zitten, waar alle afbeeldingen door polynomen gegeven worden.
pi_95180182
mimetex.cgi?%5Cint%20%5Csqrt%7B1%2B4t%5E2%7D%20dt

hoe moet deze ook weer?
pi_95181684


[ Bericht 100% gewijzigd door Siddartha op 07-04-2011 20:14:02 (Te snel.fout gelezen) ]
pi_95182613
quote:
Op donderdag 7 april 2011 19:18 schreef JoPiDo het volgende:
[ afbeelding ]

hoe moet deze ook weer?
Je zou gebruik kunnen maken van een hyperbolische substitutie:

(1) t = ½∙sinh u

Dan is:

(2) dt = ½∙cosh u∙du

Bovendien raak je dan het wortelteken kwijt door gebruik te maken van de identiteit:

(3) cosh2u - sinh2u = 1
pi_95183598
quote:
1s.gif Op donderdag 7 april 2011 20:03 schreef Riparius het volgende:

[..]

Je zou gebruik kunnen maken van een hyperbolische substitutie:

(1) t = ½∙sinh u

Dan is:

(2) dt = ½∙cosh u∙du

Bovendien raak je dan het wortelteken kwijt door gebruik te maken van de identiteit:

(3) cosh2u - sinh2u = 1
er is gewoon een standaardoplossing voor, maar ik kan hem niet vinden

iemand die het directe antwoord heeft?
pi_95183854
quote:
Op donderdag 7 april 2011 20:20 schreef JoPiDo het volgende:

[..]

er is gewoon een standaardoplossing voor, maar ik kan hem niet vinden

iemand die het directe antwoord heeft?
Dat er een standaardoplossing voor is weet ik ook wel (en ja ik weet wat die is), maar door die over te schrijven leer je niks. Dus probeer het nu toch maar zelf. Je kunt overigens ook gebruik maken van een geschikt gekozen goniometrische of algebraïsche substitutie.
pi_95184159
quote:
1s.gif Op donderdag 7 april 2011 20:24 schreef Riparius het volgende:

[..]

Dat er een standaardoplossing voor is weet ik ook wel (en ja ik weet wat die is), maar door die over te schrijven leer je niks. Dus probeer het nu toch maar zelf. Je kunt overigens ook gebruik maken van een geschikt gekozen goniometrische of algebraïsche substitutie.
Ik hoef er niets van te leren, ik moet de standaardoplossing weten zodat ik de rest van mijn vraag kan afmaken, aan dat geleuter er om heen heb ik niets.
pi_95184242
quote:
Op donderdag 7 april 2011 20:29 schreef JoPiDo het volgende:

[..]

Ik hoef er niets van te leren, ik moet de standaardoplossing weten zodat ik de rest van mijn vraag kan afmaken, aan dat geleuter er om heen heb ik niets.
Dan zoek je die standaardoplossing maar fijn zelf op. Staat gewoon in Wikipedia.
pi_95184410
quote:
1s.gif Op donderdag 7 april 2011 20:29 schreef JoPiDo het volgende:

[..]

Ik hoef er niets van te leren, ik moet de standaardoplossing weten zodat ik de rest van mijn vraag kan afmaken, aan dat geleuter er om heen heb ik niets.
:')
~Si vis amari, ama~
pi_95185882
wat een zielig groepje mensen hier :')

hij is opgelost, ondanks de 'tip' van Riparius:

U = \sqrt(1+4t^2) dV=dt

dan verandert hij pardoes in een functie die wel op wikipedia te vinden is
pi_95191495
Tip: Als je wil weten wat eruit komt en niet waarom, dan moet je het niet hier komen vragen, maar op Wolfram Alpha
pi_95191790
quote:
14s.gif Op donderdag 7 april 2011 21:57 schreef BasementDweller het volgende:
Tip: Als je wil weten wat eruit komt en niet waarom, dan moet je het niet hier komen vragen, maar op Wolfram Alpha
als iemand om de afgeleide van sin x vraagt, dan ga je toch ook niet met de definitie gooien :')
pi_95192138
quote:
1s.gif Op donderdag 7 april 2011 22:00 schreef JoPiDo het volgende:

[..]

als iemand om de afgeleide van sin x vraagt, dan ga je toch ook niet met de definitie gooien :')
Als je de afgeleide van sin x wil weten zonder het af te leiden ga je toch naar wolfram alpha en niet hierheen? Het was maar een tip.
pi_95220601
Kan iemand mij (het liefst aan de hand van een voorbeeld) uitleggen wat nou precies het verschil is tussen de Binomiale Verdeling en de Poisson Verdeling?
Op vrijdag 15 januari 2016 23:58 schreef Ajacied422 het volgende:
Feitelijk heeft Shreyas gewoon gelijk.
pi_95227625
quote:
1s.gif Op vrijdag 8 april 2011 15:50 schreef Shreyas het volgende:
Kan iemand mij (het liefst aan de hand van een voorbeeld) uitleggen wat nou precies het verschil is tussen de Binomiale Verdeling en de Poisson Verdeling?
De binomiale verdeling gebruik je als er een je een Bernouilli experiment n keer herhaalt en je wil de kans weten op k keer succes. Je hebt bijvoorbeeld 10 knikkers (3 rood 7 blauw) en je wil bijvoorbeeld weten hoe groot de kans is dat je bij drie keer pakken met terugleggen 2 rode pakt en 1 blauwe.

De poissonverdeling gebruik je vaak voor telproblemen. Bijvoorbeeld het aantal telefoontjes naar een centrale op een gegeven tijdsinterval, of het aantal gemeten pulsjes in een GM teller.
pi_95254812
Vind voor alle natuurlijke getallen n:
(7n)!/(7n . (n!))
mod 7

Ik snap dat (7n)! 0 is als je modulo 7 rekent, omdat er altijd n 7's in de priemontbinding zitten. Die worden er uitgehaald na het delen door 7n, dus dan hou je, bij het modulo 7 rekenen, nog (1*2*3*4*5*6)n over, wat gelijk is aan: 720n en in modulo 7 rekenen ook aan 6n of (-1)n.
Ik begrijp dan niet wat je met de deling door (n!) moet doen...
Finally, someone let me out of my cage
  zaterdag 9 april 2011 @ 12:21:12 #291
75592 GlowMouse
l'état, c'est moi
pi_95254919
quote:
1s.gif Op zaterdag 9 april 2011 12:18 schreef minibeer het volgende:
dus dan hou je, bij het modulo 7 rekenen, nog (1*2*3*4*5*6)n over
Dat klopt niet, kijk maar bij n=2:
1*2*3*4*5*6*7*8*9*10*11*12*13*14 / 7² = 1*2*3*4*5*6*8*9*10*11*12*13*2
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_95277805
quote:
1s.gif Op zaterdag 9 april 2011 12:21 schreef GlowMouse het volgende:

[..]

Dat klopt niet, kijk maar bij n=2:
1*2*3*4*5*6*7*8*9*10*11*12*13*14 / 7² = 1*2*3*4*5*6*8*9*10*11*12*13*2
dan begrijp ik er nog minder van dan ik dacht, ik moet er even opnieuw naar kijken :'), bedankt voor de opmerking

edit: wacht, nu maakt het meer sense zie ik, ik reageer zo met de oplossing (hoop ik) :)
Finally, someone let me out of my cage
pi_95279602
(7n)! = (7!)n . n! (= 0) mod 7
(7n)! / 7n = (6!)n . n! mod 7
(7n!) / 7n / n! = (6!)n mod 7
(6!)n = 720n = 6n = (-1)n mod 7

oftwel:
(7n!) / 7n / n! = 6 mod 7
als n oneven is, en
(7n!) / 7n / n! = 1 mod 7
als n even is.

dat leek moeilijker dan het was, bedankt voor de hulp/correctie :)
Finally, someone let me out of my cage
pi_95281081
X1,...,Xn zijn i.i.d. r.v.'s zdd EX1 = ... = EXn = 0 en ze hebben eindige derde momenten. Ik wil m.b.v. karakteristieke functies laten zien dat E(X1+...+Xn)3 = EX13 + ... + EXn3.

Ik weet dus dat mimetex.cgi?3%24%5Cblack%20%5Cphi_%7BX_1%7D%5E%7B(3)%7D(0)%20%3D%20-i%20EX_1%5E3 en dat mimetex.cgi?3%24%5Cblack%20%5Cphi_%7BX_1%7D%5E%7B(1)%7D(0)%20%3D%20i%20EX_1%20%3D%200 en dat mimetex.cgi?3%24%5Cblack%20%5Cphi_%7BX_1%2B%5Cdots%2BX_n%7D%5E%7B(3)%7D(0)%3D-iE(X_1%2B%5Cdots%2BX_n)%5E3.
pi_95303644
Bereken exact voor welke p de vergelijking px3 - 2px2 + x2 + 2,5x = 0 drie oplossingen heeft.

Het antwoord is 0,25 < p < 1

Ik snap er geen fuck van, want stel bv p=0,5, dan krijg je zo'n derdegraads grafiek, en die snijdt maar 1 keer met de x-as en niet 3 keer
pi_95303918
quote:
1s.gif Op zondag 10 april 2011 16:07 schreef Flanx het volgende:
Bereken exact voor welke p de vergelijking px3 - 2px2 + x2 + 2,5x = 0 drie oplossingen heeft.

Het antwoord is 0,25 < p < 1

Ik snap er geen fuck van, want stel bv p=0,5, dan krijg je zo'n derdegraads grafiek, en die snijdt maar 1 keer met de x-as en niet 3 keer
Klopt inderdaad, voor p=1/2 krijg je x3/2-x2+x2+2,5x=x3/2+2,5x= x(x2/2+2,5) = 0 <=> x=0. Dus die opgave die zal wel niet kloppen. Misschien heeft ie juist niet drie oplossingen voor 0,25<p<1 en anders wel.

edit: zelfs dat is niet waar
pi_95304358
Dit is echt de zoveelste fout die ik tegenkom in de uitwerkingen, pffff
pi_95304372
quote:
1s.gif Op zaterdag 9 april 2011 23:17 schreef BasementDweller het volgende:
X1,...,Xn zijn i.i.d. r.v.'s zdd EX1 = ... = EXn = 0 en ze hebben eindige derde momenten. Ik wil m.b.v. karakteristieke functies laten zien dat E(X1+...+Xn)3 = EX13 + ... + EXn3.

Ik weet dus dat [ afbeelding ] en dat [ afbeelding ] en dat [ afbeelding ].
Het is denk ik het makkelijkst eerst n=2 aan te nemen, de rest is inductie.
pi_95305359
quote:
1s.gif Op zondag 10 april 2011 16:23 schreef thabit het volgende:

[..]

Het is denk ik het makkelijkst eerst n=2 aan te nemen, de rest is inductie.
Ik neem aan dat je bedoelt eerst n=2 te bewijzen?
pi_95305406
een kleine vraag. In dit artikel over getaltheorie wordt deze notatie gebruikt:
u|b
waar u en b getallen zijn, b uit een bepaalde verzameling. Weet iemand wat deze notatie precies betekent? Ik ben er niet bekend mee. Oh en verder staat er nog:
u is een eenheid van S als: voor alle b uit S: u|b
Finally, someone let me out of my cage
pi_95305432
n is een willekeurig positief geheel getal in de opgave, lijkt me lastig om te bewijzen dat dat gelijk is aan 2.
abonnement Unibet Coolblue Bitvavo
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')