abonnement Unibet Coolblue Bitvavo
pi_41268431
Nieuw deeltje, vorige was vol.

Post hier weer al je vragen, trauma's en andere dingen die je uit je slaap houden met betrekking tot de vakken:

  • Wiskunde
  • Natuurkunde
  • Informatica
  • Scheikunde
  • Biologie
  • Algemene Natuurwetenschappen
  • Alles wat in de richting komt

    Van MBO tot WO, hier is het topic wat antwoord kan geven op je vragen

    Heb je een vraag die niet binnen het gebied 'Bèta' valt? Neem eens een kijkje in één van de volgende topics:
    [Centraal] Gamma 'huiswerk en vragen topic'
    [Centraal] Alfa 'huiswerk en vragen topic'

    Vorige deeltje Beta-huiswerkvragen
  • I asked God for a bike, but I know God doesn't work that way.
    So I stole a bike and asked for forgiveness.
    pi_41268443
    Sticky
    I asked God for a bike, but I know God doesn't work that way.
    So I stole a bike and asked for forgiveness.
    pi_41270696
    Morgen weer beginnen dus alvast een tvp'tje hierzo
      maandag 28 augustus 2006 @ 22:38:59 #4
    105263 Litso
    Interlectueel.
    pi_41273474
    Niet sticky, wel centraal
    "Dat is echt ontzettend zielig" ©
    pi_41329306
    Vraagje (Wiskunde) verkeerd gepost
    pi_41371876
    Vraag :

    IQ aankomende studenten is normaal verdeeld met u=105 en o=15. Vanaf welk IQ behoort een student tot de 15% hoogste IQ-groep?

    Mijn oplossing ->

    y1 = normalcdf(X,10000,105,15). Bij X =120 y1 = 0.15 = 15%. IQ dus 120 of hoger. Vervolgens kijk ik wat het goede antwoord is, dat is 125.0. In mijn table is x=125 y1=0.09..

    De vraag is dus of ik fout zit of het antwoordenvel.
      donderdag 31 augustus 2006 @ 20:12:32 #8
    75592 GlowMouse
    l'état, c'est moi
    pi_41373318
    Y~N(105,225), Z~N(0,1).
    Gevraagd is c zodat P(Y<c) = 0,85. Eenvoudig omschrijfwerk levert dat P((Y-105)/15 < (c-105)/15) = P(Z < (c-105)/15) = 0,85. Een tabellenboek levert dat (c-105)/15 gelijk is aan 1,04. Hieruit volgt dat c=120,6. Gebruikmakend van de tabel wordt er wat afgerond, maar 120 lijkt mij een juist antwoord.
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
    pi_41377853
    120 dacht ik dus ook... Ik heb nog een paar soortgelijke vragen gemaakt met andere gegevens en daarbij kwam mijn antwoord wel overeen met het antwoordenvel, dus ik denk dat bij bovenstaande vraag het antwoordenvel gewoon fout zit. Iig bedankt voor jouw berekening, al vind ik die van mij wat eenvoudiger
    pi_41389270
    edit: Ok, laat maar... dit was een hele stomme vraag.

    [ Bericht 47% gewijzigd door spinor op 01-09-2006 11:33:18 ]
    pi_41392069
    Vraagje, als ik van een driehoek 2 onbekende heb, hoe kan ik die dan vinden? situatie:



    Het gaat dan nu om de linkse situatie...volgens mij is het heel simpel maar ik weet niet (meer) hoe
    Bram! Boterham!
    pi_41395270
    quote:
    Op vrijdag 1 september 2006 12:59 schreef lj_lightning het volgende:
    Vraagje, als ik van een driehoek 2 onbekende heb, hoe kan ik die dan vinden? situatie:

    [afbeelding]

    Het gaat dan nu om de linkse situatie...volgens mij is het heel simpel maar ik weet niet (meer) hoe
    Ik weet niet wat je wil vinden, maar als links de rode lijn parallel is aan RT, dan is, onder de juiste voorwaarden, die driehoek gelijkbenig. De hoeken volgen daaruit en ook de lengtes zijn uit te rekenen. Maar ik weet niet wat je wilt weten.
    Alle eendjes zwemmen in het water. :)
    Anatidaephobia is altijd terecht! Wij zijn de beste stalkers...
    pi_41400776
    quote:
    Op vrijdag 1 september 2006 15:23 schreef Wackyduck het volgende:

    [..]

    Ik weet niet wat je wil vinden, maar als links de rode lijn parallel is aan RT, dan is, onder de juiste voorwaarden, die driehoek gelijkbenig. De hoeken volgen daaruit en ook de lengtes zijn uit te rekenen. Maar ik weet niet wat je wilt weten.
    Ja ik was op school en heb er een kwartier over gedaan om mijn bericht proberen te editen Ik wil weten op welke hoogte die rode lijn 4cm is (dus ik wil de lengte weten van die zwarte verticale streep)
    en om die hoogte te weten moet ik de lengte van de aanliggende zijde en overstaande zijde weten...maar hoe?
    Bram! Boterham!
      vrijdag 1 september 2006 @ 18:43:46 #14
    75592 GlowMouse
    l'état, c'est moi
    pi_41401340
    Voor de hoogte zijn bij een gegeven lengte vaak 2 mogelijkheden (zowel in de driehoek onder- als bovenin). Noem die lengte van de rode lijn l en de lengte van de zwarte lijn h.
    We onderscheiden twee situaties:
    l<0 of l>4: geen oplossing
    0<=l<=4:
    Voor de eerste mogelijkheid geldt (l / (2h)) = tan(45) = 1 (waarom?). Omschrijven naar de hoogte is denk ik geen probleem.
    Zolang h!=2 is de tweede oplossing gelijk aan 4-h.

    Hierbij heb ik gebruik gemaakt dat het zij-aanzicht een vierkant is, en symmetrisch is in een verticale lijn.

    [ Bericht 1% gewijzigd door GlowMouse op 02-09-2006 14:17:04 (grote fout :() ]
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
      woensdag 6 september 2006 @ 12:36:37 #15
    52164 pfaf
    pfief, pfaf, pfoef!
    pi_41546159
    Hey allen, even een kort vraagje. Bij Thermo kom ik in de tekst het volgende tegen waar ik niet helemaal begrijp wat ze doen.
    We komen van de 1e wet v d TD uit op:
    quote:
    (..)


    equating the dT and dv terms gives:

    Nu zie ik wel hoe de auteur er bij komt, maar wat hij nou wiskundig doet snap ik niet. dus wat dat uitdelen nu precies inhoudt...

    mvg en bvd.
    pi_41557550
    quote:
    Op woensdag 6 september 2006 12:36 schreef pfaf het volgende:
    Hey allen, even een kort vraagje. Bij Thermo kom ik in de tekst het volgende tegen waar ik niet helemaal begrijp wat ze doen.
    We komen van de 1e wet v d TD uit op:
    [..]

    Nu zie ik wel hoe de auteur er bij komt, maar wat hij nou wiskundig doet snap ik niet. dus wat dat uitdelen nu precies inhoudt...

    mvg en bvd.
    Je hebt
    a dT + b dv = c dT + d dv,
    met a b c d variabel.
    Ofwel
    (a - c) dT = (d - b) dv.
    Dit moet altijd waar zijn onafhankelijk van dT en dv, dat kan alleen maar als a-c en d-b 0 zijn, ofwel
    a = c,
    b = d.
    Alle eendjes zwemmen in het water. :)
    Anatidaephobia is altijd terecht! Wij zijn de beste stalkers...
      donderdag 7 september 2006 @ 09:34:18 #17
    52164 pfaf
    pfief, pfaf, pfoef!
    pi_41704107
    Hmm, nu pas in de gaten dat het vorige deel vol zit.
    pi_41709688
    Hoi allemaal.

    Ik heb ff wat vraagjes over het vier-kleurenprobleem. Heb er vandaag college over gehad, maar kon de docent niet echt volgen... Hij bleef maar lachen om zn eigen anekdotes en opmerkingen enzo

    Maar goed, we hebben het volgende:

    Gegeven is een kaart op de bol met de volgende eigenschappen:
    1) Elk land is een evenhoek. Dus de grens van een land vormt een rondweg met een even aantal ribben.
    2) Elk meerlandenpunt is een drielandenpunt. Dus een ribbe verbindt twee drielandenpunten.
    3) Er zijn eindig veel landen, en ze vullen het boloppervlak.

    Nu de vragen:

    1) Laat aan een voorbeeld zien dat een land minder buren kan hebben dan er ribben in zn grens zitten Die heb ik al

    2) Leg uit waarom er een land is met hoogstens vier ribben in zn grens

    3) Laat zien dat we de drielandenpunten van een + of - kunnen voorzien, zo dat elke ribbe een + met een - verbindt (beschouw een minimaal tegenvoorbeeld)


    Tijdens het verhaal van de docent kwam ook een stelling van Euler naar voren. Die was iets van:

    V - E + F = 2,

    met V=vertices (hoekpunten), E=edges(ribben) en F=faces(landen),

    maar ik zie ook niet hoe dat hier iets mee te maken heeft.

    Wie kan mij helpen???
    Theories come and theories go. The frog remains
    pi_41717257
    V - E + F = 2 is Eulers formule voor planaire grafen. De juistheid hiervan kun je inzien door uit te gaan van een boom. Hiervoor geldt V - E = 1. Bij planaire (ook wel vlakke genoemd) grafen heb je altijd een buitenvlak. Dus voor een boom geldt dat V - E + F = 2. Door nu kanten toe te voegen creeer je ook telkens een extra vlak, waardoor de formule blijft gelden.

    Elk punt heeft graad 3, dus je weet dat 2.E = 3.V. Dit invullen in de formule geeft 3.F = 6 + E. Als alle vlakken nu meer dan 4 kanten zou hebben, dus tenminste 6, dan heb je E >= 3.F en dit levert dan een tegenspraak.

    Voor je derde vraag heb ik momenteel geen tijd .
    pi_41718848
    Bij die derde vraag moet je eerst proberen aan te tonen dat uit de voorwaarde dat elk land een evenhoek is volgt dat elke cykel in de puntengraaf even lengte heeft.
    pi_41725737
    Voor de derde vraag zou ik de gegeven hint met de tweede vraag combineren .
    pi_41737699
    @ thabit: mijn bewijskunst is nogal waardeloos, dus ik zie niet hoe ik wat jij zegt aan moet tonen. Dit neemt niet weg dat ik wel snap waarom het zo is, ik kan t alleen niet echt verwoorden :S

    Maar wat ik eigenlijk niet zie is: waarom heeft dat wat je zegt iets te maken met de vraag?

    @ Wolfje: dank je. Nu snap ik t. Tijdens college had de docent dat 2E = 3V ook wel laten zien, maar ik had geen idee wat 'ie nou bedoelde... maar nu dus wel
    Theories come and theories go. The frog remains
    pi_41738024
    quote:
    Op dinsdag 12 september 2006 15:28 schreef Bioman_1 het volgende:
    @ thabit: mijn bewijskunst is nogal waardeloos, dus ik zie niet hoe ik wat jij zegt aan moet tonen. Dit neemt niet weg dat ik wel snap waarom het zo is, ik kan t alleen niet echt verwoorden :S

    Maar wat ik eigenlijk niet zie is: waarom heeft dat wat je zegt iets te maken met de vraag?
    Als je dan begint ergens een + te zetten, dan zet je op elk punt met oneven afstand van die + een - en elk punt met even afstand van die + een +. Als elke cykel even lengte heeft, dan is de pariteit van het aantal stappen om van het ene punt naar het andere punt te komen onafhankelijk van het gekozen pad.

    Het makkelijkst is hier om de drielandenpunt-voorwaarde op je graaf te laten vallen en te veronderstellen dat je een planaire graaf hebt waarvan elk land even grenslengte heeft. Dan kun je namelijk wat makkelijker gebruik maken van inductie.
    pi_41742844
    heeloo!
    we moeten dat 5| Fn <==> 5|n
    Fn staat voor de nste term van de fibonacci rij.
    ik heb nu moeite met het bewijzen van 5|n ==> 5| Fn of wel NIET( 5| Fn) ==> NIET (5|n)
    ik dacht, schrijf n=5k+1 of 5k+2 of 5k+3 of 5k+4 maar verder dan dat kwam ik niet verder...

    enige tips.. die kunnen helpen?
    alvast bedankt
    verlegen :)
    pi_41742981
    In dit speciale geval kun je de Fibonacci-rij modulo 5 opschrijven en constateren dat dat repeteert. In het algemeen kun je bewijzen dat
    als m|n dan Fm|Fn
    en voor alle m,n dat Fggd(m,n)=ggd(Fm,Fn) geldt.
    pi_41768942
    Een logica vraagje van de IQ-test van intermediar.nl:
    quote:
    »alle mannen zijn levenden - sommige mannen zijn lui

    A. geen levenden zijn lui
    B. niet alle levenden zijn lui
    C. tenminste sommige levenden zijn lui
    D. geen conclusie mogelijk

    Je koos antwoord c. Het juiste antwoord is b.
    Ik koos dus antwoord c omdat niet alle levenden mannen zijn, waardoor je nooit kunt concluderen dat alle mannen lui zijn. Maak ik nu een denkfout
    pi_41769807
    C is correct. B is fout.
    pi_41770436
    quote:
    Op woensdag 13 september 2006 14:21 schreef thabit het volgende:
    C is correct. B is fout.
    Bedankt voor de bevestiging, ik zat echt aan mijzelf te twijfelen.
    pi_41845324
    Help
    Ik wil RQ-waardes experimenteel bepalen. De vorige poging was echter een regelrechte mislukking. Ik vermoed dat dit gedeeltelijk veroorzaakt wordt door het verschil in temperatuur van de ingeademde en de uitgeademde lucht.

    De RQ-waarde is de verhouding tussen de geproduceerde CO2 (in l) en de gebruikte O2 (in l).
    Om het volume geproduceerde CO2 te berekenen moet ik de ingeademde CO2 van de uitgeademde CO2 aftrekken.
    Om het volume gebruikte O2 te berekenen moet ik de uitgeademde O2 aftrekken van de ingeademde O2.
    De uitgeademde gassen zijn echter warmer, en hebben dus een groter volume dan de ingeademde gassen.
    Is er een formule waarmee ik de volumes uitgeademde gassen terug kan brengen naar hun volume bij kamertemperatuur?
    pi_41845403
    Vertel eens wat meer. Wat meet je precies en hoe meet je het?
    De ideale gasformule is een eerste benadering in dit geval. Maar de temperatuursstijging lijkt me niet echt hoog 25 en 35 C, scheelt 10 K op 300 K. De rest van je metingen zal waarschijnlijk meer dan een 3% foutmarge hebben.
    Alle eendjes zwemmen in het water. :)
    Anatidaephobia is altijd terecht! Wij zijn de beste stalkers...
    pi_41845610
    Ik heb een bepaalde opstelling. De ingeademde lucht en de uitgeademde lucht kunnen hiermee niet tegelijk geanalyseerd worden.
    Deze opstelling geeft het gasvolume en de temperatuur van de aangezogen lucht aan. Vervolgens wordt er door het apparaat een staaltje van de aangezogen lucht geanalyseerd mbv een CO2-meter en een O2-meter die percentages aangeven. Mbv deze percentages en het gasvolume heb ik de volumes per gas berekend, voor zowel de ingeademde als de uitgeademde lucht. We hebben er dus geen rekening mee gehouden dat het volume aan uitgeademde gassen gewoon groter is.

    Onze precieze werkwijze:
    We bekijken de constante waardes van de ingeademde lucht.
    Vervolgens laten we een proefpersoon uitademen in het apparaat. Per 0,01 m^3 uitgeademde lucht noteren we het percentage aan O2 en CO2.
    We berekenen het verschil in uitgeademde CO2 en ingeademde CO2 en het verschil van de ingeademde O2 en de uitgeademde CO2. We delen dan de volumes van de verschillende gassen door elkaar

    [ Bericht 26% gewijzigd door vliegtuigje op 15-09-2006 21:04:35 ]
    pi_41845807
    Meet je volume percentages of massa percentages.
    Wat is het temperatuurverschil, wat zijn je meetwaarden en in hoeverre wijken die af van je verwachtingen.
    Bedoel je hier met volume het volumedebiet (volume/tijd [m3/s]) en meet je dat continu?

    Misschien is het een idee om niet in absolute volumens, maar om in volumepercentages te werken. Als je ervan uit gaat dat bij dit kleine temperatuurverschil alle gassen evenveel uitzetten is dat ook een mogelijkheid.
    Alle eendjes zwemmen in het water. :)
    Anatidaephobia is altijd terecht! Wij zijn de beste stalkers...
    pi_41846004
    Dat eerste is nog niet geheel duidelijk. Ze komen echter wel ongeveer overheen met de percentages die normale 'lucht' zou moeten hebben. Ik ga er dus vanuit dat het volumepercentages zijn.
    Het temperatuurverschil is redelijk klein, meer dan 4 graden is het zeker niet.
    De meetwaarden leken eerst te kloppen. Zoals we verwachtten neemt het percentage CO2 toe nadat men gegeten heeft. De hoeveelheid CO2 in de ingeademde lucht leek echter groter dan de theorie deed verwachten.
    De verhouding klopt echter niet. We verkrijgen RQ-waardes die hoger zijn dan 1, wat onmogelijk is.

    Het volume is echt puur het volume wat door het apparaat stroomt.
    pi_41846113
    V = (m * K * T) / p
    Kan ik er vanuit gaan dat het aantal mol ingeademde lucht gelijk is aan het aantal mol ingeademde lucht? dan zou ik nl met de algemene gaswet kunnen berekenen wat de toename in volume is.
    Deze is dan vrij verwaarloosbaar.
    pi_41846227
    Iemand hier merkte net op dat het logisch zou zijn als de apparaten steeds het volumepercentage berekenen van stalen met hetzelfde volume.
    Het enige wat er dan zou verandere bij een temperatuurstijging is het aantal mol van zo'n staal.
    Dan zou ik met de volgende formule kunnen berekenen hoeveel mol er per liter is bij een temperatuurstijging van enkele graden:
    (p * V) / (K * T) = n

    Klopt dat?
    pi_41857526
    Zij (X,T) een topologische ruimte, E een topologische deelruimte van X en V een open-gesloten verzameling in E. Omdat V open is in E kun je stellen dat er een deelverzameling G1 van X is zodat de doorsnede van E en G1 gelijk is aan V. Omdat V ook gesloten is in E, is E \ V open en kun je dus ook stellen dat er een deelverzameling G2 van X is zodat de doorsnede van E en G2 gelijk is aan E \ V.

    Maar kun je ook stellen dat er zulke G1 en G2 bestaan die disjunct zijn? Dat is namelijk precies wat ik nog nodig heb om een bepaald bewijs af te maken, maar ik zie eigenlijk zelf niet zo in dat er ook altijd disjuncte G1 en G2 zouden moeten bestaan.
    pi_41858017
    Ik neem aan dat G1 en G2 open moeten zijn? In dat geval kan het niet.

    Neem maar een oneindige verzameling X met de co-eindige topologie (dwz de lege verzameling en alle complementen van eindige deelverzamelingen zijn open). Dit is een topologische ruimte waarin 2 niet-lege open delen altijd een niet-lege doorsnede hebben. Neem voor E een deelverzameling bestaande uit 2 punten en voor V een deelverzameling van E die uit 1 punt bestaat.
    pi_41858864
    G1 en G2 mogen ook allebei gesloten zijn, maar jouw voorbeeld brengt me wel in verwarring dus ik ga alle definities nog even heel goed nalezen.
    pi_41861662
    Als G1 en G2 allebei gesloten zijn kan het ook niet. Neem bijvoorbeeld X = R (i.e. de verzameling reele getallen met standaardtopologie), E = R-{0}, V = (0,oneindig).
    pi_41863824
    Huh? Maar in dat geval kun je toch wel open G1 en G2 vinden? Namelijk (-oneindig,0) en (0,+oneindig).

    Klopt het dat je wel altijd zo'n disjunct open paar of gesloten paar kan vinden als V onsamenhangend is?
    pi_41864364
    Nog maar een voorbeeld dan. Neem voor X het projectieve vlak over een oneindig lichaam waarbij de gesloten delen alle eindige verenigingen van punten en lijnen zijn (en natuurlijk de hele X). Kies hierin twee lijnen L1 en L2 en noem het snijpunt P. Neem E = L1 U L2 - {P}, V = {L1} - P. Als ik me niet heb vergist is dit een voorbeeld waar je je disjuncte G1 en G2 noch allebei open, noch allebei gesloten kunt kiezen.

    Ik vrees dat je toch een andere aanpak moet verzinnen voor je "bepaald bewijs".
    pi_41867302
    quote:
    Op vrijdag 15 september 2006 21:16 schreef vliegtuigje het volgende:
    V = (m * K * T) / p
    Kan ik er vanuit gaan dat het aantal mol ingeademde lucht gelijk is aan het aantal mol ingeademde lucht? dan zou ik nl met de algemene gaswet kunnen berekenen wat de toename in volume is.
    Deze is dan vrij verwaarloosbaar.
    Ik heb weinig biologische kenins, maar ik betwijfel het. Omdat een deel van de stoffen (vooral zuurstof) wordt opgenomen door het lichaam.
    quote:
    Op vrijdag 15 september 2006 21:20 schreef vliegtuigje het volgende:
    Iemand hier merkte net op dat het logisch zou zijn als de apparaten steeds het volumepercentage berekenen van stalen met hetzelfde volume.
    Het enige wat er dan zou verandere bij een temperatuurstijging is het aantal mol van zo'n staal.
    Dan zou ik met de volgende formule kunnen berekenen hoeveel mol er per liter is bij een temperatuurstijging van enkele graden:
    (p * V) / (K * T) = n

    Klopt dat?
    Reken eerst dV/dT (partiële afgeleide uit, of zoek de waarde op in een tabel) en kijk of er daadwerkelijk sprake is van een beetje toename in volume.

    Wat ik me wel afvraag is of je gemeten inademwaardes overeen komen met die waardes bij het uitademen, of dat het überhaupt goed mogelijk om dit soort dingen niet-continu te meten. Als er iemand overdreven uitademt in een apparaat krijg je waarschijnlijk gekke dingen.
    Alle eendjes zwemmen in het water. :)
    Anatidaephobia is altijd terecht! Wij zijn de beste stalkers...
      zaterdag 16 september 2006 @ 23:25:53 #44
    134103 gebrokenglas
    Half human, half coffee
    pi_41874416
    Waar het om gaat is dit:
    De telling van een mechanische tapecounter om te zetten in minuten en seconden.

    Bijvoorbeeld dat je weet dat als de teller 0500 aanwijst dat je op 5:30 minuten van je tape zit.

    De formule die hiervoor gebruikt kan worden is :

    t = K1 * theta - K2*theta2
    waarbij t = de tijd, theta de tellerstand en K1 en K2 constanten. Nu moet je dus eerst die constanten berekenen.

    Nu is dit 1 vergelijking met 2 onbekenden, maar je kunt gewoon 2 waarden pakken.
    Bijvoorbeeld
    Bij 23 minuten staat de tapecounter op 1450
    Bij 45 minuten (1 kant van een 90min bandje) staat de tapecounter op 2356

    Maar ik kom er toch niet uit.

    t1 = K1 * theta - K2*theta2
    t2 = K1 * theta - K2*theta2

    Dus:
    23 = K1 * 1450 - K2 * 14502
    45 = K1 * 2356 - K2 * 23562

    K1 * 1450 - K2 * 14502 - 23 = 0
    K1 * 2356 - K2 * 23562 - 45 = 0

    1450K1 - 2102500K2 - 23 = 0
    2356K1 - 5550736K2 - 45 = 0

    1450K1 - 2345K1 - 2102500K2 + 5550736K2 - 23 + 45 = 0

    Gaat dit wel goed? Hoe nu verder? 'k ben verdorie de hele avond al aan het rekenen maar ik kom er niet uit.
    Het zijn 2 vergelijkingen met 2 onbekenden dus dat zou op te lossen moeten zijn.
    How can I make this topic about me?
    pi_41875126
    Je moet die eerste vergelijking vermenigvuldigen met 2356/1450. Als je dan de vergelijkingen van elkaar aftrekt is de konstante K_1 verdwenen, dus kan je K_2 gewoon berekenen. K_1 volgt hier dan weer uit.
      zondag 17 september 2006 @ 14:10:49 #46
    112372 alyel
    love is just an illusion
    pi_41888035
    een opdracht van ANW waar ik niet uitkom;

    Je loopt met een groep van 10 man in een rotswoestijn bij 45 graden. Jullie hebben te weinig water en er komt diarree. De tocht duurt 3-4 dagen en je hebt voor 1.5 dag water.
    Langs de weg kom je poeltjes en artesisch water tegen. Je mag een rugzak van met 10 kg meenemen. Wat neem je mee en waarom? (ook werden we verwezen naar Norit, Immodium en ORS). Wie heeft een idee?
    my future seems like one big past...
    pi_41888523
    quote:
    Op zondag 17 september 2006 14:10 schreef alyel het volgende:
    een opdracht van ANW waar ik niet uitkom;

    Je loopt met een groep van 10 man in een rotswoestijn bij 45 graden. Jullie hebben te weinig water en er komt diarree. De tocht duurt 3-4 dagen en je hebt voor 1.5 dag water.
    Langs de weg kom je poeltjes en artesisch water tegen. Je mag een rugzak van met 10 kg meenemen. Wat neem je mee en waarom? (ook werden we verwezen naar Norit, Immodium en ORS). Wie heeft een idee?
    Ik zou een vouwfiets mee nemen, dan kun je vast wel 3 keer zo snel gaan en heb je dus voldoende water voor de hele tocht .
    pi_41889021
    quote:
    Op zondag 17 september 2006 14:26 schreef Wolfje het volgende:

    [..]

    Ik zou een vouwfiets mee nemen, dan kun je vast wel 3 keer zo snel gaan en heb je dus voldoende water voor de hele tocht .
    Of een radio-installatie om hulp in te roepen.
    Alle eendjes zwemmen in het water. :)
    Anatidaephobia is altijd terecht! Wij zijn de beste stalkers...
    pi_41889634
    Ik zoek de afgeleide van de volgende functie:

    f1(x) = Wortel(x2+4)

    Het antwoord weet ik want die staat achterin het boek, maar de berekening mist en ik zou het zelf niet meer weten
    Ook kon ik geen vergelijkbare functies terugvinden in het boek met een uitwerking
    pi_41889838
    quote:
    Op zondag 17 september 2006 15:04 schreef -tK- het volgende:
    Ik zoek de afgeleide van de volgende functie:

    f1(x) = Wortel(x2+4)

    Het antwoord weet ik want die staat achterin het boek, maar de berekening mist en ik zou het zelf niet meer weten
    Ook kon ik geen vergelijkbare functies terugvinden in het boek met een uitwerking
    Maak gebruik van wortel(x) = x^0.5 en van de kettingregel
    pi_41927743
    quote:
    Op zaterdag 16 september 2006 16:30 schreef thabit het volgende:
    Nog maar een voorbeeld dan. Neem voor X het projectieve vlak over een oneindig lichaam waarbij de gesloten delen alle eindige verenigingen van punten en lijnen zijn (en natuurlijk de hele X). Kies hierin twee lijnen L1 en L2 en noem het snijpunt P. Neem E = L1 U L2 - {P}, V = {L1} - P. Als ik me niet heb vergist is dit een voorbeeld waar je je disjuncte G1 en G2 noch allebei open, noch allebei gesloten kunt kiezen.

    Ik vrees dat je toch een andere aanpak moet verzinnen voor je "bepaald bewijs".
    Het is al opgelost. De stelling die ik moest bewijzen blijkt helemaal niet te kloppen.
    pi_41970834
    quote:
    Op zondag 17 september 2006 15:04 schreef -tK- het volgende:
    Ik zoek de afgeleide van de volgende functie:

    f1(x) = Wortel(x2+4)

    Het antwoord weet ik want die staat achterin het boek, maar de berekening mist en ik zou het zelf niet meer weten
    Ook kon ik geen vergelijkbare functies terugvinden in het boek met een uitwerking
    f[x] = sqrt(x^2 + 4)
    f[x] = (x^2 + 4)^0.5
    f'[x] = 0.5(x^2 + 4)^-0,5 * 2x = (x^2 + 4)^-0.5 * x = (1 / sqrt(x^2 + 4)) * x

    [ Bericht 2% gewijzigd door thomzor op 20-09-2006 00:26:58 ]
      woensdag 20 september 2006 @ 01:11:11 #53
    75592 GlowMouse
    l'état, c'est moi
    pi_41971859
    Stel A is een aftelbare deelverzameling van [0,1] en g een toenemende functie van [0,1] naar R+. Kan de (stieltjes)integraal [0 tot 1] 1Adg gedefinieerd zijn als A oneindig veel elementen bevat?
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
    pi_41982263
    Niet voor elke A en g.
    pi_41991015
    quote:
    Op woensdag 20 september 2006 00:21 schreef thomzor het volgende:

    [..]

    f[x] = sqrt(x^2 + 4)
    f[x] = (x^2 + 4)^0.5
    f'[x] = 0.5(x^2 + 4)^-0,5 * 2x = (x^2 + 4)^-0.5 * x = (1 / sqrt(x^2 + 4)) * x
    En om het helemaal af te maken kan je er ook nog x/sqrt(4+x^2) van maken
    "I'm trained not to see beautiful women, because they might distract me from my mission."
    pi_41992025
    quote:
    Op woensdag 20 september 2006 19:15 schreef Thundertje het volgende:

    [..]

    En om het helemaal af te maken kan je er ook nog x/sqrt(4+x^2) van maken
    dat staat er al...
    pi_41999527
    he hee!
    ik heb gehoord over een functie die overal continu is en toch nergens differentieerbaar is..
    ik bedoel niet de functie
    f(x)=1 als x uit Q is
    f(x)=0 als x uit RQ is
    want deze is toch niet continu...

    ik weet niet meer van wie die functie was... dus wie die had geconstrueerd...

    groetjes
    verlegen :)
      woensdag 20 september 2006 @ 23:17:47 #58
    75592 GlowMouse
    l'état, c'est moi
    pi_42001622
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
    pi_42015411
    Een mechanicavraagje . (Plaatje kan er ik niet bijdoen ivm ontbreken scanner).

    Iemand staat voorovergebukt. Beschouw romp, hoofd en armen als een hefboom. In de heupen ligt het scharnierpunt S. Het zwaartepunt van de hefboom ligt op 20cm van S. Spieren oefenen bij de schouders (die 60 cm van het scharnierpunt liggen) een kracht uit van 900N om de hefboom in evenwicht te houden. Deze spierkracht maakt een hoek van 9,3 graden met de horizontaal.

    a) Bereken de massa van de hefboom (hoofd, romp en armen).
    b) Bereken hoe groot de kracht is die in het scharnierpunt S op de onderrug werkt.

    Bij a dacht ik aan het volgende antwoord: 0,2 x m x 9,8 = 0,6 x 900
    m = 32 kg (afgerond). IK weet niet of het klopt, maar persoonlijk vind het erg weinig voor de romp, hoofd en armen van een volwassen man.

    Bij b dacht ik aan: sin 9,3 graden = overstaande / 900

    Overstaande = sin 9,3 graden x 900 = 145 newton (naar beneden afgerond).

    Alvast bedankt voor het helpen
    pi_42082647
    hehee.. twee vraagjes over c++
    while statement....
    int count = 3;
    while ( count-- > 0)
    cout << count << " ";

    de uitput is 2 1 0 (waarom ook 0 ?)

    en wat betekent het als er --count stond..? dus wat is eigenlijk --count?

    kan iemand mij helpen? thanx.
    verlegen :)
    pi_42082791
    Bij count-- > 0 bekijkt hij eerst count > 0 en dan pas wordt count-- uitgevoerd. Bij --count > 0 wordt eerst --count gedaan en dan pas count > 0 bekeken.
    pi_42098573
    okee! thanx
    lastige taal is dit, visual basic was een stukje makkelijker
    verlegen :)
      zondag 24 september 2006 @ 21:46:14 #63
    51635 de_priester
    Nil nequit amor
    pi_42099577
    Ik heb een vraagje, over een vraagstuk waar ik in zijn geheel niet uitkom.
    Wie kan mij een tip geven?

    Het gaat om het volgende:
    http://www.ahd.tudelft.nl(...)/vraagst/Vrgst-5.pdf
    en dan B

    Ik weet niet welke vgl's ik het beste kan gebruiken om tot een kloppend antwoord te komen!
    Het lukt me steeds niet.

    [ Bericht 6% gewijzigd door de_priester op 25-09-2006 11:18:42 ]
    Imperare sibi maximum imperium est
      zondag 24 september 2006 @ 22:13:57 #64
    75592 GlowMouse
    l'état, c'est moi
    pi_42100025
    quote:
    Op zondag 24 september 2006 21:46 schreef de_priester het volgende:
    Ik heb een vraagje, over een vraagstuk waar ik in zijn geheel niet uitkom.
    Wie kan mij een tip geven?

    Het gaat om het volgende:
    http://www.ahd.tudelft.nl(...)/vraagst/Vrgst-5.pdf
    en dan B

    Ik weet niet welke vgl's ik het beste kan gebruiken om tot een kloppend antwoord te komen!
    Het lukt me steeds niet.
    Een werkende link zou handig zijn...
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
    pi_42100286
    quote:
    Op zondag 24 september 2006 20:50 schreef teletubbies het volgende:
    okee! thanx
    lastige taal is dit, visual basic was een stukje makkelijker
    Je kunt natuurlijk ook de 2 commando's/expressies apart opschrijven in plaats van in 1 expressie te willen stoppen, wordt je code heel wat leesbaarder door.
    pi_42104019
    tnx, tvp
    Deze zomer wordt u aangeboden door ... God - Visje (het christelijke zusje van Loesje )
    pi_42108521
    nogmaals, met werkende link:

    Ik heb een vraagje, over een vraagstuk waar ik in zijn geheel niet uitkom.

    Het gaat om het volgende:
    http://www.ahd.tudelft.nl(...)/vraagst/Vrgst-5.pdf
    en dan B

    Ik weet niet welke vgl's ik het beste kan gebruiken om tot een kloppend antwoord te komen!
    Het lukt me steeds niet, want bij substitutie van de vgls gaat het steeds mis. (en dat doe ik in maple)

    De gangbare aanpak is volgens mij met massabehoud, impulsbehoud, en bernouillie

    massabehoud en impulsbehoud staan hieronder, maar hoe moet ik bernouillie toepassen?
    kan iemand ff checken of dit de goede kant op werkt

    Imperare sibi maximum imperium est
      maandag 25 september 2006 @ 20:07:04 #68
    53268 HomerJ
    Your talking to me?
    pi_42120805
    Kan iemand mij helpen? Ik doe nu VWO en alles gaat me prima af behalve Wiskunde B1.

    Ik zit nog in de basis met differentieren maar ik snap echt niet hoe je in godsnaam dit doet.
    Interval is dus [X, X+DeltaX]

    En dan voor de Functie, f(x) = X^3

    Dan doe je Delta Y/Detla X.
    Delta Y wordt dan:



    Maar hoe ga je in godsnaam daarheen? Dit vond ik in het antwoordenboekje, maar ik snap niet hoe je dit doet

    Kan iemand dit met stap voor stap uitleggen?
    "the female orgasme is a mythe, I hae had sex with 26 women in my life and not one of them had a orgasme."
    pi_42120995
    a=x^3
    b=delta x^3

    (a+b)^3 -a^3=
    (a+b)(a+b)(a+b) - a^3= (a+b)(a^2+2ab+b^2) -a^3
    = a^3 + 2a^2b + ab^2 + a^2b + 2ab^2 + b^3 - a^3
    = 3a^2b + 3ab^2 + b^3

    Ik kom dus hier op uit.
    Ik mis dus de factor x^3 want die vervalt bij mij en bij jou niet.
    I asked God for a bike, but I know God doesn't work that way.
    So I stole a bike and asked for forgiveness.
    pi_42121003
    f(x) = x^3
    f'(x) = 3x^2

    x^g = g*x^(g-1)
    ^ basisregel afgeleiden

    edit: laatmaar ik begrijp geloof ik de vraag niet echt
      maandag 25 september 2006 @ 21:09:00 #71
    53268 HomerJ
    Your talking to me?
    pi_42122044
    quote:
    Op maandag 25 september 2006 20:16 schreef thomzor het volgende:
    f(x) = x^3
    f'(x) = 3x^2

    x^g = g*x^(g-1)
    ^ basisregel afgeleiden

    edit: laatmaar ik begrijp geloof ik de vraag niet echt
    Tjah dat is meer 4 Havo stof

    Het gaat erom dat je het op een andere manier laat zien hoe je van X^3 naar 3X^2 gaat. En dat moet met heel veel machten en delta's
    "the female orgasme is a mythe, I hae had sex with 26 women in my life and not one of them had a orgasme."
      maandag 25 september 2006 @ 21:13:29 #72
    53268 HomerJ
    Your talking to me?
    pi_42122269
    quote:
    Op maandag 25 september 2006 20:16 schreef -J-D- het volgende:
    a=x^3
    b=delta x^3

    (a+b)^3 -a^3=
    (a+b)(a+b)(a+b) - a^3= (a+b)(a^2+2ab+b^2) -a^3
    = a^3 + 2a^2b + ab^2 + a^2b + 2ab^2 + b^3 - a^3
    = 3a^2b + 3ab^2 + b^3

    Ik kom dus hier op uit.
    Ik mis dus de factor x^3 want die vervalt bij mij en bij jou niet.
    Heel erg bedankt, hier begin ik al iets meer van te snappen.
    "the female orgasme is a mythe, I hae had sex with 26 women in my life and not one of them had a orgasme."
    pi_42123752
    quote:
    Op maandag 25 september 2006 21:13 schreef HomerJ het volgende:

    [..]

    Heel erg bedankt, hier begin ik al iets meer van te snappen.
    Das dan 5 euro.
    I asked God for a bike, but I know God doesn't work that way.
    So I stole a bike and asked for forgiveness.
    pi_42125651
    quote:
    Op maandag 25 september 2006 11:22 schreef de_priester het volgende:
    nogmaals, met werkende link:

    Ik heb een vraagje, over een vraagstuk waar ik in zijn geheel niet uitkom.

    Het gaat om het volgende:
    http://www.ahd.tudelft.nl(...)/vraagst/Vrgst-5.pdf
    en dan B

    Ik weet niet welke vgl's ik het beste kan gebruiken om tot een kloppend antwoord te komen!
    Het lukt me steeds niet, want bij substitutie van de vgls gaat het steeds mis. (en dat doe ik in maple)

    De gangbare aanpak is volgens mij met massabehoud, impulsbehoud, en bernouillie

    massabehoud en impulsbehoud staan hieronder, maar hoe moet ik bernouillie toepassen?
    kan iemand ff checken of dit de goede kant op werkt

    [afbeelding]
    nog iemand ? (heb tot morgen 11.00 u)
    Imperare sibi maximum imperium est
    pi_42136473
    kickje
    Imperare sibi maximum imperium est
    pi_42137628
    quote:
    Op maandag 25 september 2006 21:09 schreef HomerJ het volgende:

    [..]

    Tjah dat is meer 4 Havo stof
    Het gaat erom dat je het op een andere manier laat zien hoe je van X^3 naar 3X^2 gaat. En dat moet met heel veel machten en delta's
    lol , ik heb wiskunde B2 gedaan op t vwo en ik heb nog nooit gezien wat jij daar deed XD
    zal wel aan mijn school (of de jouwe) liggen dan
      dinsdag 26 september 2006 @ 17:10:31 #77
    53268 HomerJ
    Your talking to me?
    pi_42145089
    Ik heb Wiskunde B1, misschien ligt het daar aan?

    Anyway, weet iemand anders nog hoe je kan laten zien dat:
    f(x)= X^3 = f'(x) 3X^2

    Zonder dus differentieregels maar meer met Delta Y
    "the female orgasme is a mythe, I hae had sex with 26 women in my life and not one of them had a orgasme."
    pi_42153158
    he hee!
    hoe moet ik bewijzen dat er oneindig veel priemgetallen zijn die bij deling door 4, rest 3 geven.
    thanx
    verlegen :)
    pi_42154312
    quote:
    Op dinsdag 26 september 2006 21:40 schreef teletubbies het volgende:
    he hee!
    hoe moet ik bewijzen dat er oneindig veel priemgetallen zijn die bij deling door 4, rest 3 geven.
    thanx
    De aanpak is hetzelfde als hoe je bewijst dat er oneindig veel priemgetallen zijn. Stel dat er maar N (eindig uiteraard) priemgetallen -1 mod 4 zijn. Definieer x = 2 + p_1^2....p_N^2. Er geldt dat x = -1 mod 4. Als x geen priemgetal is, dan moet het wel een deler -1 mod 4 hebben. Maar dit kan niet omdat het wel p_1^2...p_N^2 deelt maar niet 2. Dus er zijn oneindig veel priemgetallen van de vorm 3 mod 4.

    Leuk sommetje! Ik had hem zelf nog niet eerder gezien .
      dinsdag 26 september 2006 @ 22:42:38 #80
    75592 GlowMouse
    l'état, c'est moi
    pi_42155253
    quote:
    f(x)= X^3 = f'(x) 3X^2
    Wat een gelijkheden, klopt geen zak van. Je zegt nu dat f(x) gelijk is aan f'(x).

    Met behulp van de definitie: lim(k->0) (f(c+k)-f(c)) / k = lim(k->0) ((c+k)³-c³)/k = lim(k->0) (3c²k+3ck²+k³)/k = lim(k->0) 3c²+3ck+k² = 3c².
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
    pi_42155594
    quote:
    Op dinsdag 26 september 2006 22:12 schreef Wolfje het volgende:

    [..]

    De aanpak is hetzelfde als hoe je bewijst dat er oneindig veel priemgetallen zijn. Stel dat er maar N (eindig uiteraard) priemgetallen -1 mod 4 zijn. Definieer x = 2 + p_1^2....p_N^2. Er geldt dat x = -1 mod 4. Als x geen priemgetal is, dan moet het wel een deler -1 mod 4 hebben. Maar dit kan niet omdat het wel p_1^2...p_N^2 deelt maar niet 2. Dus er zijn oneindig veel priemgetallen van de vorm 3 mod 4.

    Leuk sommetje! Ik had hem zelf nog niet eerder gezien .
    ik dacht aan die aanpak ook.
    alleen ik gebruikte p1...pn*4+3= N (n het nieuwe priemgetal ). maar goed k kwam moeilijkheden tegen..
    k ga het zo doorlezen
    thanx
    verlegen :)
    pi_42156285
    quote:
    Op dinsdag 26 september 2006 22:53 schreef teletubbies het volgende:

    [..]

    ik dacht aan die aanpak ook.
    alleen ik gebruikte p1...pn*4+3= N (n het nieuwe priemgetal ). maar goed k kwam moeilijkheden tegen..
    k ga het zo doorlezen
    thanx
    Jouw getalletje werkt inderdaad ook wel als je eist dat p_i <> 3. Het gaat erom dat een getal dat 3 mod 4 is, altijd een factor 3 mod 4 heeft. Maak hierbij gebruik van (a mod c)*(b mod c) = (a*b) mod c.
    pi_42177313
    quote:
    Op woensdag 13 september 2006 14:21 schreef thabit het volgende:
    C is correct. B is fout.
    Laat antwoord, maar ik ben het er niet mee eens. Stel dat er wel levenden zijn maar geen van dezen zijn mannelijk, en aangezien alleen mannen lui kunnen zijn zijn er dan niet per se luie levenden.
    pi_42177538
    quote:
    Op woensdag 27 september 2006 19:38 schreef Aibmi het volgende:

    [..]

    Laat antwoord, maar ik ben het er niet mee eens. Stel dat er wel levenden zijn maar geen van dezen zijn mannelijk, en aangezien alleen mannen lui kunnen zijn zijn er dan niet per se luie levenden.
    "Sommige mannen zijn lui". Hieruit kun je afleiden dat er mannen zijn.
    pi_42177764
    quote:
    Op woensdag 27 september 2006 19:38 schreef Aibmi het volgende:

    [..]

    Laat antwoord, maar ik ben het er niet mee eens. Stel dat er wel levenden zijn maar geen van dezen zijn mannelijk, en aangezien alleen mannen lui kunnen zijn zijn er dan niet per se luie levenden.
    Er staat nergens dat alleen mannen lui kunnen zijn. Voor de rest verwijs ik naar thabit's commentaar .
    pi_42177940
    quote:
    Op woensdag 27 september 2006 19:54 schreef Wolfje het volgende:

    [..]

    Er staat nergens dat alleen mannen lui kunnen zijn. Voor de rest verwijs ik naar thabit's commentaar .
    Oei, ik had meerdere keren moeten lezen/nadenken voordat ik tegen thabit in zou gaan op zijn terrein. Maar wat jij zegt klopt niet. Als er niet staat dat niet-mannen lui kunnen zijn, weet je het niet zeker, en kun je er dus van uit gaan dat ze niet lui zijn(bij dit soort logische redeneringen moet je alleen van zekerheden uitgaan).
      woensdag 27 september 2006 @ 20:05:47 #87
    75592 GlowMouse
    l'état, c'est moi
    pi_42178188
    quote:
    weet je het niet zeker, en kun je er dus van uit gaan dat ze niet lui zijn(bij dit soort logische redeneringen moet je alleen van zekerheden uitgaan).
    Het enige wat je zeker weet is dat je er niks over kunt zeggen. En toch doe jij dat door te stellen dat je er vanuit kunt gaan dat ze niet lui zijn.
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
    pi_42178823
    quote:
    Op woensdag 27 september 2006 20:05 schreef GlowMouse het volgende:

    [..]

    Het enige wat je zeker weet is dat je er niks over kunt zeggen. En toch doe jij dat door te stellen dat je er vanuit kunt gaan dat ze niet lui zijn.
    Ok, knullig geformuleerd. Daar ben ik het mee eens. Maar ik bedoelde in ieder geval dat je nooit er van uit kan gaan dat het wel zo is als het niet zeker is. In dit geval had ik dus wel gelijk, want het niet conclusies kunnen trekken uit niet bestaande informatie komt op het zelfde neer als negatief aannemen.
    pi_42191301
    Ik heb een vraagje over:
    Impliciet Differentiëren
    de opgave:
    xy=6e^(2x-3y)
    Mijn gedachte was:
    xy'+y=(2-3y')6e^(2x-3y)
    xy'+y=(12-18y')e^(2x-3y)


    Kan iemand mij helpen?
      donderdag 28 september 2006 @ 10:54:11 #90
    75592 GlowMouse
    l'état, c'est moi
    pi_42193532
    Je gedachten kloppen. Mocht je nog willen herschrijven naar y'= ..., zorg dan eerst dat je y' aan een kant krijgt en haal y' buiten haakjes.
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
    pi_42193831
    Bedankt voor je reactie!
    Dat was idd mijn volgende gedachte, maar ik kwam er niet verder uit.
    Ik wist maar niet hoe ik y'= zou moeten krijgen.

    Ik weet het nog steeds niet:'(

    [ Bericht 10% gewijzigd door Rejected op 28-09-2006 13:40:10 ]
      donderdag 28 september 2006 @ 17:53:44 #92
    75592 GlowMouse
    l'état, c'est moi
    pi_42204999
    Zorg eerst dat je y' aan een kant krijgt: xy' + 18y'*exp(2x-3y) = 12*exp(2x-3y)-y
    Dan y' buiten haakjes halen: y'(x+18*exp(2x-3y) = 12*exp(2x-3y)-y
    Dan links en rechts delen door 18*exp(2x-3y): y' = (12*exp(2x-3y)-y) / 18*exp(2x-3y) = 2/3 - y/ 18*exp(2x-3y).
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
    pi_42212928
    quote:
    Op donderdag 28 september 2006 17:53 schreef GlowMouse het volgende:
    Zorg eerst dat je y' aan een kant krijgt: xy' + 18y'*exp(2x-3y) = 12*exp(2x-3y)-y
    Dan y' buiten haakjes halen: y'(x+18*exp(2x-3y) = 12*exp(2x-3y)-y
    Dan links en rechts delen door 18*exp(2x-3y): y' = (12*exp(2x-3y)-y) / 18*exp(2x-3y) = 2/3 - y/ 18*exp(2x-3y).
    Ik snap niet precies wat er in de 1e regel gebeurt, om y' aan uitsluitend aan de linkerkant te krijgen moet je toch delen door (12-18y')??
      donderdag 28 september 2006 @ 21:32:12 #94
    75592 GlowMouse
    l'état, c'est moi
    pi_42213670
    Als je daardoor deelt, is hij rechts weg maar houd je links een term y/(12-18y') over. Je krijgt dan y' niet meer los zonder weer met 12-18y' te vermenigvuldigen.
    Wat ik doe, is rechts de haakjes wegwerken en dan 18y'*exp(2x-3y) links en rechts optellen.
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
    pi_42214981
    Oh jeetje, wat stom dat ik daar niet aan gedacht had!
    Hulde GlowMouse Held
    Heel erg bedankt
    pi_42231962
    Ik heb het al een keer eerder gevraagt maar ik kom er niet uit het gaat om het volgende:


    Ik moet 'Punt X' berekenen, ik moet namelijk weten op welke hoogte het vierkantje (dat blauwe vlakje) 4x4 cm is... hoe is dit te doen? Cos Tas Toa is even geleden maar ik weet alleen dat hoek Q 45graden is... kan je dan Cos/Tas/Toa toepassen?
    Bram! Boterham!
    pi_42232152


    Kan je hier iets mee?
    Verhoudingen

    btw. het is SOS CAS TOA en niet TAS of zo
    Maar dat heb je dus nu ff niet nodig.
    I asked God for a bike, but I know God doesn't work that way.
    So I stole a bike and asked for forgiveness.
      vrijdag 29 september 2006 @ 14:10:53 #98
    75592 GlowMouse
    l'état, c'est moi
    pi_42232168
    quote:
    Op vrijdag 29 september 2006 14:02 schreef lj_lightning het volgende:
    Ik heb het al een keer eerder gevraagt maar ik kom er niet uit het gaat om het volgende:

    [afbeelding]
    Ik moet 'Punt X' berekenen, ik moet namelijk weten op welke hoogte het vierkantje (dat blauwe vlakje) 4x4 cm is... hoe is dit te doen? Cos Tas Toa is even geleden maar ik weet alleen dat hoek Q 45graden is... kan je dan Cos/Tas/Toa toepassen?
    Van 'cos/tas/toa' heb ik niet gehoord, maar als je dit op kunt lossen, kan het met goniometrie. Als de bissectrice van Q tekent, kún je twee rechthoekige driehoeken zien ontstaan. Voorwaarde is dan wel dat het blauwe vlakje recht ligt.
    Waarom zou het blauwe vlakje trouwens niet bovenin de balk zitten?

    Op je tekening lijkt hoek Q trouwens eerder 90 graden, maar dat maakt verder niet uit.
    eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
    pi_42232512
    quote:
    Op vrijdag 29 september 2006 14:10 schreef GlowMouse het volgende:

    [..]

    Van 'cos/tas/toa' heb ik niet gehoord, maar als je dit op kunt lossen, kan het met goniometrie. Als de bissectrice van Q tekent, kún je twee rechthoekige driehoeken zien ontstaan. Voorwaarde is dan wel dat het blauwe vlakje recht ligt.
    Waarom zou het blauwe vlakje trouwens niet bovenin de balk zitten?

    Op je tekening lijkt hoek Q trouwens eerder 90 graden, maar dat maakt verder niet uit.
    Ehh ja goniometrie en bissectrice komen niet in mijn woordeboekje voor Het is 5Havo btw
    en hoek Q is 90 graden, foutje van mij
    Bram! Boterham!
    pi_42232557
    quote:
    Op vrijdag 29 september 2006 14:09 schreef -J-D- het volgende:
    [afbeelding]

    Kan je hier iets mee?
    Verhoudingen

    btw. het is SOS CAS TOA en niet TAS of zo
    Maar dat heb je dus nu ff niet nodig.
    Kun je nagaan hoelang het geleden is komt gelukkig niet opt examen dacht ik

    Maar met verhoudings tabellen heb ik eik nog nooit gezien bij meetkunde het klopt wel (ik gebruik sketchup en die laat de afmetingen zien en het is 2,0cm en 4x2,85/5,65 is 2,0
    Bram! Boterham!
    abonnement Unibet Coolblue Bitvavo
    Forum Opties
    Forumhop:
    Hop naar:
    (afkorting, bv 'KLB')