Iemand een idee hoe ik dit kan bewijzen?quote:Op donderdag 10 november 2011 18:49 schreef Alxander het volgende:
Consider [tex]A = \begin{pmatrix} 0 & 0 &0 &0 &0 &1\\
0 &0 &0 &0 &1&1\\
0 &1 &0 &0 &0 &0\\
1&1&0 &0 &0 &0\\
0 &0 &0 &1&0&0\\
0 &0 &1 & 1&0&0 \end{pmatrix} [/tex]
Is deze matrix primitief? Hij is niet primitief, maar hoe bewijs ik dat?
Heb hem inderdaad nu. Dankjewelquote:Op donderdag 10 november 2011 19:37 schreef twaalf het volgende:
Als je hem in 2x2 blokjes verdeelt, kun je misschien bewijzen met inductie dat er altijd maar één blokje per rij en één blokje per kolom niet-nul is?
ok sorry typfoutje ik bedoelde ookquote:Op donderdag 10 november 2011 20:12 schreef GlowMouse het volgende:
ken je merkwaardige producten: (a-b)(a+b) = ...
het is ( 4a2+ b2)(4a2- b2)
of ( 4a2+ b2)(2a - b)(2a + b)
Ik vind jouw antwoord eigenlijk zelfs nog netterquote:Op donderdag 10 november 2011 20:21 schreef daantje1044 het volgende:
Ok dank je wel. In mijn boek gaven ze als antwoord (4a2+ b2)(2a-b)(2a+b). En ik had het neergezet als (4a2+ b2)(4a2- b2).
Maar als dat ook goed is dan is er geen probleem verder.
Ik denk dat het de bedoeling is dat je de uitdrukking zo ver mogelijk in factoren ontbindt. En dan is jouw antwoord weliswaar correct maar heb je niet alles gedaan wat je kunt doen (en verdien je dus ook niet alle punten als dit een proefwerkvraag zou zijn). Ik denk trouwens ook niet dat de opdracht luidde om 16a4 - b4 tussen haakjes te zetten, want dan krijg je (16a4 - b4) en dat zou wat al te gemakkelijk zijn.quote:Op donderdag 10 november 2011 20:21 schreef daantje1044 het volgende:
Ok dank je wel. In mijn boek gaven ze als antwoord (4a2+ b2)(2a-b)(2a+b). En ik had het neergezet als (4a2+ b2)(4a2- b2).
Maar als dat ook goed is dan is er geen probleem verder.
nee, de vraag was ontbind in factoren, was te lui om het op te zoeken. maar ik moet ze dus wel zo ver mogelijk uitwerken.quote:Op donderdag 10 november 2011 20:41 schreef Riparius het volgende:
[..]
Ik denk dat het de bedoeling is dat je de uitdrukking zo ver mogelijk in factoren ontbindt. En dan is jouw antwoord weliswaar correct maar heb je niet alles gedaan wat je kunt doen (en verdien je dus ook niet alle punten als dit een proefwerkvraag zou zijn). Ik denk trouwens ook niet dat de opdracht luidde om 16a4 - b4 tussen haakjes te zetten, want dan krijg je (16a4 - b4) en dat zou wat al te gemakkelijk zijn.
Ah zo. Ik dacht dat je in de eerste klassen van het middelbaar zat gezien de vraag. Het boek van Van de Craats vind ik inderdaad niet best. Voor een aantal onderwerpen is er wel betere uitleg te vinden op internet, gewoon een beetje zoeken.quote:Op donderdag 10 november 2011 20:51 schreef daantje1044 het volgende:
[..]
nee, de vraag was ontbind in factoren, was te lui om het op te zoeken. maar ik moet ze dus wel zo ver mogelijk uitwerken.
Ik ben bezig in het basisboek wiskunde om mijn wiskunde een beetje bij te spijkeren zodat ik mijn wiskundeboek waarover ik wel een tentamen heb beter begrijp. Maar daarin doen ze niet echt aan uitleg. En ik ben helaas niet zo'n wiskunde wonder. Ik heb dit op de havo allemaal wel gehad, maar dat is 8 jaar geleden en al heel ver weggezakt.
Geloof me, het boek van het HBO is zo mogelijk nog vager dan het boek van craats.quote:Op donderdag 10 november 2011 20:58 schreef Riparius het volgende:
[..]
Ah zo. Ik dacht dat je in de eerste klassen van het middelbaar zat gezien de vraag. Het boek van Van de Craats vind ik inderdaad niet best. Voor een aantal onderwerpen is er wel betere uitleg te vinden op internet, gewoon een beetje zoeken.
Inderdaad. De grap is dat als je "heel veel" binomiale experimenten doet, dat het dan bij benadering normaal verdeeld is. Dat is een toepassing van de centrale limietstelling: http://nl.wikipedia.org/wiki/Centrale_limietstelling .quote:Op vrijdag 11 november 2011 14:16 schreef martijnnum1 het volgende:
p(y100 >= 53) = 1 - p(y100<=52) wordt benaderd door 1 - stdnormaal ((52 - np )/ (sqrt (npq))) =
1 - stdnrml ( (52-50) / (sqrt 25) = 1 - stdnrml (0.4) = 0.34
klopt dit?
Wat is de context? Ik denk niet dat daar een algemene methode voor is.quote:Op vrijdag 11 november 2011 16:38 schreef Siddartha het volgende:
Hoe laat je zien hoeveel reflexieve en symmetrische relaties er zijn op een verzameling A met n elementen?
Er hoeft geen formeel bewijs voor gegeven te worden, meer een uitleg waarom het klopt wat ik zeg.quote:Op vrijdag 11 november 2011 16:40 schreef thenxero het volgende:
[..]
Wat is de context? Ik denk niet dat daar een algemene methode voor is.
Er zijn (n boven 2) paren van verschillende elementen. Elk paar kan wel of niet in de relatie zitten, dat zijn 2 mogelijkheden. Dus we hebben 2(n boven 2) van zulke relaties.quote:Op vrijdag 11 november 2011 16:38 schreef Siddartha het volgende:
Hoe laat je zien hoeveel reflexieve en symmetrische relaties er zijn op een verzameling A met n elementen?
Combinaties mag ik niet gebruiken, maar dit geeft me wel een idee om het op te schrijven:quote:Op vrijdag 11 november 2011 16:47 schreef thabit het volgende:
[..]
Er zijn (n boven 2) paren van verschillende elementen. Elk paar kan wel of niet in de relatie zitten, dat zijn 2 mogelijkheden. Dus we hebben 2(n boven 2) van zulke relaties.
Het totaal aantal relaties is 2n^2. Het aantal symmetrische relaties kan natuurlijk nooit groter zijn dan dat.quote:Op zaterdag 12 november 2011 13:13 schreef Siddartha het volgende:
Nog even een snelle vraag:
Alle symmetrische relaties zijn dan:
2(1/2)n^2 (n-1)
Omdat je nu ook nog de keuze hebt voor de n gelijke paren, dus zijn er (1/2)n2(n-1) paren, etc.
Toch?
Oeps..quote:Op zaterdag 12 november 2011 13:30 schreef thabit het volgende:
[..]
Het totaal aantal relaties is 2n^2. Het aantal symmetrische relaties kan natuurlijk nooit groter zijn dan dat.
Je maakt hier gebruik van het feit dat als het kwadraat van een rationaal getal geheel is, dat dan dat rationale getal geheel is. En dat is iets heel anders dan je hierboven beweerde.quote:Op zaterdag 12 november 2011 15:27 schreef Anoonumos het volgende:
Hmm. Dat klopt niet inderdaad, maar dat is toch wat hier staat? Het gaat om het bewijzen van de transiviteit van de relatie x y <-> xy is een kwadraat( op Z):
Stel xy = p² en yz = q²2 dan is xz = (pq/y)² . Om-
dat dit kwadraat een geheel getal is, is ook pq/y
geheel (!) en dus is xz een kwadraat van een
geheel getal.
Riemannsommen worden in de praktijk alleen met de computer gebruikt om integralen uit te rekenen die "lastig" zijn. Als je een goede benadering wil met een Riemannsom dan moet je een hele kleinequote:Op zondag 13 november 2011 13:38 schreef Lukep het volgende:
Al eerder gepost, alleen blijkbaar op de verkeerde plek!
Ik heb momenteel een probleem. In mijn methode, getal en ruimte, wordt blijkbaar niet uitgelegd hoe je integralen en riemannsommen (de Sigma-notatie) uitrekent, slechts op je GR.
Hierbij de vraag: hoe moet ik uit het hoofd [ afbeelding ] en
[ afbeelding ] uitrekenen?
Probeer eens een tekening te maken bij het (eenvoudige) voorbeeld dat thenxzero uitwerkt. Het idee is dat je de 'oppervlakte onder de curve' (in dit geval een rechte lijn) over een bepaald interval (hier [0,2]) kunt benaderen door die oppervlakte in smalle verticale 'reepjes' te verdelen, en dan elk reepje bij benadering te beschouwen als een rechthoek, waarvan de oppervlakte uiteraard eenvoudig is te bepalen. De benadering wordt dan steeds beter naarmate de rechthoeken (reepjes) smaller worden. We nemen verticale reepjes, omdat de 'hoogte' van elk reepje (rechthoek) dan bij benadering de functiewaarde ter plaatse is, terwijl we de breedte van alle reepjes hetzelfde kunnen nemen (dat hoeft niet, maar is wel zo gemakkelijk). Als je nu het interval [0, 2] in bijvoorbeeld 20 gelijke stukjes (deelintervallen) verdeelt, dan heeft elk verticaal reepje dus een breedte van 0,1. Die twintig deelintervallen kun je voorstellen als [xk, xk+1] met xk = 0,1∙k. en k = 0..19.quote:Op zondag 13 november 2011 17:54 schreef Lukep het volgende:
Bravo, geweldig uitgelegd! Te zeggen dat je uitleg goed was, zou een understatement zijn.
Ik heb echter een klein probleem (waarschijnlijk een zeer simpele en 'domme' vraag, alleen ik zie hem op het moment niet).
Waarom is xk = 0.1k? Waarom verdwijnt de functie f(xk) en komt er slechts xk voor in de plaats als je voor Δx 0.1 neemt?
Als laatste stel vragen: waar komt de 20 vandaan (en waarom), en waarom vermenigvuldig je die met 19/2 (hoe komt 19/2 er überhaupt te staan)?
We zijn bezig met de functie f(x)=x. In het bijzonder geldt dus f(xk)=xk.quote:Op zondag 13 november 2011 19:00 schreef Lukep het volgende:
Jazeker, zo ver was ik ook, toch bedankt voor het ophelderen van xk = 0,1∙k!
Alleen het is mij nog steeds niet duidelijk waarom de functie f(xk) plaats maakt voor de standaardformule xk = 0,1∙k. Immers: xk = 0,1∙k is alleen goed voor de x-coordinaten van de deelintervallen, niet de y-waarde/hoogte zoals f(xk).
Daarnaast is het mijn nog steeds onduidelijk waarom plotseling het sigma-teken met een 20 en 19/2 verwisselt wordt. Het is mij natuurlijk duidelijk dat 20 de hoeveelheid deelintervallen is enz enz, maar waarom de 20 dan te vermenigvuldigen met 19/2?
En wat is regel 2?quote:Op zondag 13 november 2011 20:36 schreef Dale. het volgende:
Dringend vraagje mensen...
Ik wil graag het volgende berekenen.
Ik heb een bord van 5x5. Nu kan ik 1 steen op 25 verschillende plekken leggen. Nu wil ik graag weten hoeveel combinaties er zijn wanneer 2 stenen op het veld leg (antwoord weet ik al). De enigste twee regels die er zijn is dat de 2 stenen niet direct langs elkander mogen liggen. Hieronder zie je 2 voorbeelden. In de linker zijn er nog 22 mogelijkheden en in de rechter 20.
[ afbeelding ]
Nu wil ik dus weten op hoeveel combinaties er zijn als er 1 steen (25), 2 stenen (22*4 + 21*12 + 20*9 = 520), 3 stenen (???) op het veld liggen.
Is er een elegante methode om dit te berekenen?
Gewoon die-hard alle mogelijkheden doorgenomen?quote:Op maandag 14 november 2011 13:06 schreef Dale. het volgende:
[..]
Euh sorry 1 regelgeen idee waarom ik 2 regels schreef. Maar iig, het aantal combo's is 8844
Dat begrijp ik, omdat het gewoon niet klopt. Zie het tegenvoorbeeld van GlowMouse.quote:Op zaterdag 19 november 2011 21:44 schreef Anoonumos het volgende:
V is een niet-lege , naar boven begrensde deelverzameling van. Ik wil een rij in V construeren zodat 1)
en 2) sup V is de limiet van de rij.
Ik dacht zelf aan: construeer een rij zodat:
Ik heb nu moeite met het uitleggen dat sup V de limiet van de rij is.
Het is heel goed mogelijk dat sup(V) de limiet is van je rij terwijl sup(V) zelf niet in V zit.quote:Ik dacht aan:vormen het interval
waarvan ik wel kan bewijzen dat sup V het supremum is. Ook weet ik niet of het vanzelfsprekend is dat
.
Weet iemand hoe ik dit goed op kan schrijven? Of kan ik dit wel zo zeggen?
1) sup V in Vquote:
Heb je er ook rekening mee gehouden dat je deelverzameling V van R geen interval hoeft te bevatten?quote:
Waarom bestaat dat element dan?quote:Op zaterdag 19 november 2011 23:51 schreef Anoonumos het volgende:
Inderdaad niet volledig geformuleerd. Neem voor v(i+1) het kleinste element zo dat v(i + 1) > (vi + supV)/2. Zo had ik het bedacht.
jawelquote:Op zaterdag 19 november 2011 23:53 schreef thenxero het volgende:
[..]
Een open verzameling in R heeft bijvoorbeeld geen kleinste element. Dus als je begint met v0 endan bestaat v1 al niet meer.
Nee, pak [0,1) en vi = 0.5-1/iquote:Op zondag 20 november 2011 00:12 schreef Anoonumos het volgende:
Als je zegt dat v(i+1) > vi en v(i+1) is bevat in V, is dat dan niet al voldoende voor een constructie?
Dat kan. Nu moet je alleen nog laten zien dat die verzameling niet leeg is, dus dat er daadwerkelijk zo'n v_{i+1} is en dat de limiet sup V is. (daarvoor moet je dus nog wel een extra eis hebben voor de keuze van v_{i+1}, anders kan de limiet ook kleiner dan de bovengrens zijn zoals Glowmouse al aangaf).quote:Op zondag 20 november 2011 00:06 schreef Anoonumos het volgende:
Heb je gelijk in.en anders weet ik het niet meer.
Dit gaat niet werken als je verzameling V slechts een eindig aantal elementen bevat (en dat kan).quote:Op zondag 20 november 2011 00:06 schreef Anoonumos het volgende:
Heb je gelijk in.en anders weet ik het niet meer.
Is supV dan niet automatisch bevat in V? En daar had ik een simpele oplossing voor.quote:Op zondag 20 november 2011 00:41 schreef Riparius het volgende:
[..]
Dit gaat niet werken als je verzameling V slechts een eindig aantal elementen bevat (en dat kan).
Precies dan is er geen probleem. Het lastige geval is als de sup buiten V ligt.quote:Op zondag 20 november 2011 00:47 schreef Anoonumos het volgende:
[..]
Is supV dan niet automatisch bevat in V? En daar had ik een simpele oplossing voor.
Bedankt voor de kritische blik allen.
Ja, dat is waar. Maar je zou een constructie voor je rij {vn} moeten kunnen aangeven onafhankelijk van de aard van V en onafhankelijk van de vraag of sup(V) nu wel of geen element van V is, anders blijft het erg onelegant.quote:Op zondag 20 november 2011 00:47 schreef Anoonumos het volgende:
[..]
Is supV dan niet automatisch bevat in V? En daar had ik een simpele oplossing voor.
Bedankt voor de kritische blik allen.
Het probleem met jouw definitie 2 is dat het een voorbeeld is. Je kan een voorbeeld geven van een definitie, maar de definitie zelf kan geen voorbeeld zijn. In plaats van die 2.14 en -3.5 moet je dus een algemene x>0 en x<0 nemen.quote:
zet je adblocker uit en/of leeg je browsercachequote:Op dinsdag 22 november 2011 20:22 schreef Anoonumos het volgende:
Is al gelukt! (mbv. Excuses voor de dubbelpost maar mijn edit-knop werkt niet gek genoeg.
Ik begrijp er geen reet van, want bij eigenlijk alles wat ik doe krijg ik een y = x lijn tussen de residuen en de afhankelijke variabel y. (wat dus niet mag..?)quote:Op woensdag 23 november 2011 20:33 schreef GlowMouse het volgende:
Met een lineaire term en een kwadratische term zou je een eind kunnen komen. Positief/negatief bepaalt de OLS schatter.
Als je nu eens begint te bedenken dat je hebt:quote:Op woensdag 23 november 2011 20:53 schreef Sokz het volgende:
L'integrale
[ afbeelding ]
u = x5-1
du = 5xdx
Nu deed ik een voorbeeld uit 't boek na met iets andere getallen maar die deden dit:
'iets' [ afbeelding ] = 'iets' * 1/13 u13 + C
5x ......................................................................................... 5x
Maar wat moet ik in hemelsnaam voor dat 'iets' invullen .. volgens het antwoordenboek moest iets/5x 1/70 zijn mar als je dat terugrekent krijg je een onzinnig getal (1/13 * x = 1/70 » x = 5.3846 ... onzin)
Ik zal de uitwerking even afmaken. We krijgen dan:quote:Op donderdag 24 november 2011 00:23 schreef Sokz het volgende:
Maar jij komt dus op ehm, 1/5 integr. en het antwoordenboek geeft 1/70 integr.
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |