abonnement Unibet Coolblue Bitvavo
pi_59251988
ok thnx
/
pi_59252485
quote:
Op maandag 9 juni 2008 16:55 schreef lovefight7 het volgende:
heb dringend een antwoord nodig op deze vraag.
liefst uitleg van een minuut of meer

waarom ga je omhoog als je springt of hoe komt dat
Waarom zo snel, heb je de rest van de tijd nodig om 1 minuut tekst in je hoofd te stampen?
Maar oke hier mijn inspanning voor jou, wel letterlijk vertellen en doen alsof je het begrijpt:

-Waarom ga je omhoog als je springt en hoe komt dat nou eigenlijk. Dat is de vraag die ik mij stelde waar ik nu ook een presentatie over geef. Gezien mijn lage niveau kan ik zelf niet op een normale wijze een antwoord hier op vinden. De termen als "zwaartekracht" en "spierkracht" zeggen mij uiteraard niks. Ik betwijfel dus ook of dit dan ook daadwerkelijk de goede school voor mij is of dat ik eigenlijk nog moet puzzelen in groep 1. Om even een antwoord te geven op de vraag die ik mij stelde. Dat komt door de neofenetische G-krachten welke mij op de aarde houden. Maar de neofenetische G-krachten zijn niet sterk genoeg om mij niet van de aarde los te laten. Vandaar dus dat als je spierkracht gebruikt dat je iets omhoog gaat en daarna terug valt naar de aarde. Dit omdat de neofenetische G-krachten mij terugtrekken. Denk hierbij bijvoorbeeld aan de maan, daar zijn de neofenetische G-krachten veel sterker. Als ik daar zou springen dan zou ik wegvliegen. Dit was mijn presentatie, doei.

Lukt wel toch, en vooral die term neofenetische G-krachten goed in je hoofd stampen, die moet je zeker noemen wil je deze presentatie tot een voldoende brengen
Chinaphones / andere artikelen: www.fok.nl/tag/chinaopfok
Top 5 China producten
pi_59747514
Hebben bomen een bewustzijn?
TREMBLE MORTALS, FOR I AM A DESTROYER OF INTERNET SPACESHIPS
pi_59749107
quote:
Op zaterdag 28 juni 2008 05:40 schreef ProfeetAdolf het volgende:
Hebben bomen een bewustzijn?
neen
I feel kinda Locrian today
pi_59749149
quote:
Op maandag 9 juni 2008 17:24 schreef lovefight7 het volgende:
nee tis al goed ik doe over waarom is de lucht blauw maar is dat een wetenschappelijke vraag?
http://nl.wikipedia.org/wiki/Rayleighverstrooiing
I feel kinda Locrian today
  zaterdag 12 juli 2008 @ 21:49:09 #247
158899 GasTurbine
SEE THE PATERN ON MY COCK
pi_60065659
Over de vochtvanger even het (niet opgezochte) antwoord van mijn kant.
Het lijkt me dat er een roostertje inzit, plus warmte die voor condensvorming zorgt, terwijl een ventilatortje de lucht erdoorheen blaast. Maar dat is allemaal bedacht door mij net.
'houd je bek is joh, als je zulke grote kk praatjes heb moet je is naar Tiel komen.'
„Je bent ’n keronje! Je mag zelf ’n zoogdier wezen, jy en je zoon, dat zeg ik je!”
pi_60088340
Vraag m.b.t. evolutie.

Survival of the fittest. Natuurlijke selectie.
Schildpadden bestaan al een in elk geval 215 miljoen jaar.
Er zijn behoorlijk wat schildpadden die op b.v. het strand eieren leggen en dan weer terugkeren naar zee. Als de eieren uitkomen rennen de jonge nakomelingen naar zee. Van de honderden redt slechts een fractie van de hele groep het naar zee, want ondertussen worden ze door allerlei roofdieren aangevallen en opgegeten.

Aangezien de snelsten (+ geluk) succesvol de zee bereiken en dit cruciaal is voor de overleving van de schildpad en we te maken hebben met survival of the fittest en natuurlijke selectie... zou je verwachten dat over die miljoenen jaren de schildpad zich heeft aangepast en heel snel zijn geworden.
Waarom is de schildpad nog zo langzaam? (vanuit evolutie-oogpunt)
  maandag 14 juli 2008 @ 01:28:07 #249
158899 GasTurbine
SEE THE PATERN ON MY COCK
pi_60088386
Ze zijn tevreden: ze winnen toch wel van de haas.
'houd je bek is joh, als je zulke grote kk praatjes heb moet je is naar Tiel komen.'
„Je bent ’n keronje! Je mag zelf ’n zoogdier wezen, jy en je zoon, dat zeg ik je!”
pi_60113444
quote:
Op maandag 14 juli 2008 01:23 schreef OldJeller het volgende:
Vraag m.b.t. evolutie.

Survival of the fittest. Natuurlijke selectie.
Schildpadden bestaan al een in elk geval 215 miljoen jaar.
Er zijn behoorlijk wat schildpadden die op b.v. het strand eieren leggen en dan weer terugkeren naar zee. Als de eieren uitkomen rennen de jonge nakomelingen naar zee. Van de honderden redt slechts een fractie van de hele groep het naar zee, want ondertussen worden ze door allerlei roofdieren aangevallen en opgegeten.

Aangezien de snelsten (+ geluk) succesvol de zee bereiken en dit cruciaal is voor de overleving van de schildpad en we te maken hebben met survival of the fittest en natuurlijke selectie... zou je verwachten dat over die miljoenen jaren de schildpad zich heeft aangepast en heel snel zijn geworden.
Waarom is de schildpad nog zo langzaam? (vanuit evolutie-oogpunt)
Blijkbaar overleven er genoeg om, gezien hun redenatie, de hoeveelheid schildpadden en dus hun genoom binnen stabiele hoeveelheid te laten blijven. Sneller lopen vereist ook meer energie, wat ten koste moet gaan aan andere voordelen die de jonge schildpad eventueel geniet.

Bovendien zal een moeder nooit meer eieren leggen dan dat zij (eigenlijk haar genen) noodzakelijk acht, zodat er een stabiele relatie ontstaat tussen de moeite en energie die ze per ei geeft en het resultaat, 50% van haar genen per overlevende nakomeling, dat het oplevert. De moeder zal genoeg eieren leggen om dit proces te maximaliseren per keer dat ze eieren legt. Als al haar jonge schildpadden de tocht zouden overleven, zou ze minder eieren gaan leggen.

Even allemaal afgezien van de factor dat de mens ook schildpadden kan afmaken.

[ Bericht 6% gewijzigd door boyv op 15-07-2008 06:58:26 ]
pi_60117372
quote:
Op zaterdag 12 juli 2008 21:49 schreef GasTurbine het volgende:
Over de vochtvanger even het (niet opgezochte) antwoord van mijn kant.
Het lijkt me dat er een roostertje inzit, plus warmte die voor condensvorming zorgt, terwijl een ventilatortje de lucht erdoorheen blaast. Maar dat is allemaal bedacht door mij net.
Warmte zorgt toch juist voor verdamping? Je hebt koude nodig voor condensvorming.
quote:
De HG vochtvanger werkt op basis van vochtaanzuigende korrels. Het systeem is geluidloos en werkt zonder stroom of batterijen. De toegepaste, ronde vocht-vang-korrels hebben een groter absorptie-oppervlak dan de vaak toegepaste schilfers en door de ronde vorm ontstaat er bovendien meer ruimte tussen de korrels waardoor er meer lucht (met vocht) langs de korrels kan stromen. Tezamen met de, op een zo hoog mogelijk luchtcontact vormgegeven korrelkorf, resulteert dit in een vochtvanger die sneller is, langer zijn werk doet en bovendien tot wel 1,5 keer meer vocht uit de lucht onttrekt dan vergelijkbare systemen.
I feel kinda Locrian today
pi_60163903
quote:
Op dinsdag 15 juli 2008 12:12 schreef starla het volgende:

[..]

Warmte zorgt toch juist voor verdamping? Je hebt koude nodig voor condensvorming.
[..]


dat zijn 2 verschillende systemen, elektrische vochtvreters werken idd met koude en condensvorming,
de gewone werken met calciumchloride, een sterk hygroscopische stof (trekt water aan).
  donderdag 17 juli 2008 @ 14:51:04 #253
158899 GasTurbine
SEE THE PATERN ON MY COCK
pi_60166560
quote:
Op dinsdag 15 juli 2008 12:12 schreef starla het volgende:

[..]

Warmte zorgt toch juist voor verdamping? Je hebt koude nodig voor condensvorming.
[..]


Klopt, typvautje.
Overigens was de rest van dat wat ik typte gewoon in 2 sec. bedacht, en het leek me wel logisch.
'houd je bek is joh, als je zulke grote kk praatjes heb moet je is naar Tiel komen.'
„Je bent ’n keronje! Je mag zelf ’n zoogdier wezen, jy en je zoon, dat zeg ik je!”
pi_60167662
Waarschijnlijk als ik de uitleg lees, denk ik DUH... maar goed, bij deze een vraag:

Omtrek van een cirkel is uiteraard 2*π*r
Nu is pi een irrationaal getal, dwz, een getal dat alleen benaderd kan worden.

Als nu r=5, dan is de omtrek dus 10π, dus 31,4159 26535 89793 23846 26433.....
Met andere woorden, de omtrek van de cirkel is dus alleen benaderbaar, niet precies uit te meten. Als ik nu simpelweg een meetlat om de cirkel heen leg (bijv. een wiel), dan kan ik wel de precieze omtrek meten, zelfs al ga je zo ver als plancklengtes.

Ik kan even de link niet maken met een lengte die uit de berekening komt als niet 100% berekenbaar, maar in praktijk wel 100% te meten is...

Waar maak ik de fout?
You can't convince a believer of anything; for their belief is not based on evidence, it's based on a deep seated need to believe
C. Sagan
pi_60168685
Geen idee of deze vraag heir hoort, maar ik vraag het me al een tijdje af. Ik werk in een soort callcenter en we werken daar met headsets met één 'oortje'. Er zijn mensen die er al tig jaar lang 40 uur per week werken. Krijgen die mensen een sterker of juist beschadigd gehoor aan de kant waar zij altijd hun oortje dragen of maakt het niets uit?

edit: deze headsets

  donderdag 17 juli 2008 @ 16:37:16 #256
41885 kless
morgen? waarom niet overmorgen
pi_60168960
quote:
Op donderdag 17 juli 2008 15:42 schreef The_stranger het volgende:
Waarschijnlijk als ik de uitleg lees, denk ik DUH... maar goed, bij deze een vraag:

Omtrek van een cirkel is uiteraard 2*π*r
Nu is pi een irrationaal getal, dwz, een getal dat alleen benaderd kan worden.

Als nu r=5, dan is de omtrek dus 10π, dus 31,4159 26535 89793 23846 26433.....
Met andere woorden, de omtrek van de cirkel is dus alleen benaderbaar, niet precies uit te meten. Als ik nu simpelweg een meetlat om de cirkel heen leg (bijv. een wiel), dan kan ik wel de precieze omtrek meten, zelfs al ga je zo ver als plancklengtes.

Ik kan even de link niet maken met een lengte die uit de berekening komt als niet 100% berekenbaar, maar in praktijk wel 100% te meten is...

Waar maak ik de fout?
Die precieze omtrekheb je niet, want het lint zelf gaat ook een dikte geven. maar is wel een benadering die er heel dicht bij komt.

Maar hoe precies ga je het meten? en waarmee dan? Want al die dingen hebben zelf ook een afwijking.

Het wordt interesanter als je dit gebruikt in funties waarmee je behalve omtrek ook oppervlakken en inhoud gaat berekenen voor waar je het nogmeer als model voor kan gebruiken waar een meetlint geen nut heeft omdat het geen lengte maten meer zijn. maar bijvoorbeeld een kans of tijd of aantallen.
Vrouwen moeten niet zeiken over hun uiterlijk. Met hun innerlijk is veel meer mis.
iGEM
pi_60169783
quote:
Op donderdag 17 juli 2008 16:37 schreef kless het volgende:

[..]

Die precieze omtrekheb je niet, want het lint zelf gaat ook een dikte geven. maar is wel een benadering die er heel dicht bij komt.

Maar hoe precies ga je het meten? en waarmee dan? Want al die dingen hebben zelf ook een afwijking.
Ok, snap ik, maar deze problemen kun je in het geval van een cirkel (grotendeels) omzeilen door het wiel door zand te laten rijden, precies het begin en het einde aan te geven (1 rotatie) en die afstand te meten. Dan heb je met de dikte van een meetlat niet meer te maken. Dan heb je, afhankelijk van de precisie van de meetlat, toch de exacte lengte, terwijl berekenen niet 100% de lengte (omtrek) geeft.

(*)meetlat kan van alles zijn, van een echte stalen meetlat tot laser etc etc
You can't convince a believer of anything; for their belief is not based on evidence, it's based on a deep seated need to believe
C. Sagan
pi_60170812
quote:
Op donderdag 17 juli 2008 17:11 schreef The_stranger het volgende:

[..]

Ok, snap ik, maar deze problemen kun je in het geval van een cirkel (grotendeels) omzeilen door het wiel door zand te laten rijden, precies het begin en het einde aan te geven (1 rotatie) en die afstand te meten. Dan heb je met de dikte van een meetlat niet meer te maken. Dan heb je, afhankelijk van de precisie van de meetlat, toch de exacte lengte, terwijl berekenen niet 100% de lengte (omtrek) geeft.

(*)meetlat kan van alles zijn, van een echte stalen meetlat tot laser etc etc
Maar dan kan de laser nog wel een antwoord geven, maar die krijg je met de berekening ook, als je het gewoon als pi-getal houdt en dus anders schrijft.

Plus dat er natuurlijk altijd onnauwkeurigheid zit in zo een meting, als je het door zand laat rijden zakt het weg, dus je nauwkeurigheid is weggevallen.
Chinaphones / andere artikelen: www.fok.nl/tag/chinaopfok
Top 5 China producten
  donderdag 17 juli 2008 @ 18:44:36 #259
158899 GasTurbine
SEE THE PATERN ON MY COCK
pi_60171579
quote:
Op donderdag 17 juli 2008 16:25 schreef Lixi het volgende:
Geen idee of deze vraag heir hoort, maar ik vraag het me al een tijdje af. Ik werk in een soort callcenter en we werken daar met headsets met één 'oortje'. Er zijn mensen die er al tig jaar lang 40 uur per week werken. Krijgen die mensen een sterker of juist beschadigd gehoor aan de kant waar zij altijd hun oortje dragen of maakt het niets uit?

edit: deze headsets

[ afbeelding ]
Meestal staan ze te hard; dus ja. Dan kan je inderdaad schade van ondervinden.
'houd je bek is joh, als je zulke grote kk praatjes heb moet je is naar Tiel komen.'
„Je bent ’n keronje! Je mag zelf ’n zoogdier wezen, jy en je zoon, dat zeg ik je!”
pi_60178666
quote:
Op donderdag 17 juli 2008 15:42 schreef The_stranger het volgende:
Waarschijnlijk als ik de uitleg lees, denk ik DUH... maar goed, bij deze een vraag:

Omtrek van een cirkel is uiteraard 2*π*r
Nu is pi een irrationaal getal, dwz, een getal dat alleen benaderd kan worden.

Als nu r=5, dan is de omtrek dus 10π, dus 31,4159 26535 89793 23846 26433.....
Je hebt zoiets als wiskunde, en je hebt zoiets als de natuur die je ermee kunt beschrijven. Cirkels van r=5 bestaan alleen in theorie. In werkelijkheid heb je cirkels van r=5,... En dan zijn dat niet exacte cirkels, maar benaderingen. Dus r is ook niet constant.
pi_60182801
quote:
Op vrijdag 18 juli 2008 00:21 schreef Haushofer het volgende:

[..]

Je hebt zoiets als wiskunde, en je hebt zoiets als de natuur die je ermee kunt beschrijven. Cirkels van r=5 bestaan alleen in theorie. In werkelijkheid heb je cirkels van r=5,... En dan zijn dat niet exacte cirkels, maar benaderingen. Dus r is ook niet constant.
Dus eigenlijk kom het, kort door de bocht, erop neer dat de wiskunde prima werkt, mits je het op "papier" houdt, maar de "echte" wereld slechts kan benaderen?

En zo ja, heeft dat dan invloed op het gedrag van voornamelijk erg kleine deeltjes en reacties daarmee? Want als er inderdaad een "verschil" zit tussen de wiskunde en de echte wereld, zal dat vooral op kleine schaal de grootste invloed hebben...

Of gaat dat weer te ver?
You can't convince a believer of anything; for their belief is not based on evidence, it's based on a deep seated need to believe
C. Sagan
pi_60183503
quote:
Op donderdag 17 juli 2008 15:42 schreef The_stranger het volgende:
Waarschijnlijk als ik de uitleg lees, denk ik DUH... maar goed, bij deze een vraag:

Omtrek van een cirkel is uiteraard 2*π*r
Nu is pi een irrationaal getal, dwz, een getal dat alleen benaderd kan worden.

Als nu r=5, dan is de omtrek dus 10π, dus 31,4159 26535 89793 23846 26433.....
Met andere woorden, de omtrek van de cirkel is dus alleen benaderbaar, niet precies uit te meten. Als ik nu simpelweg een meetlat om de cirkel heen leg (bijv. een wiel), dan kan ik wel de precieze omtrek meten, zelfs al ga je zo ver als plancklengtes.

Ik kan even de link niet maken met een lengte die uit de berekening komt als niet 100% berekenbaar, maar in praktijk wel 100% te meten is...

Waar maak ik de fout?
Warrig betoog. De fout die je maakt is dat je irrationaliteit (wiskunde) en meetonnauwkeurigheid (fysica) met elkaar verwart. Een meting is altijd behept met een zekere meetonnauwkeurigheid, ook als het gaat om de meting van een grootheid die zich wiskundig gezien tot een andere grootheid verhoudt als de verhouding tussen twee gehele getallen. Wiskundig gezien is de verhouding tussen de omtrek en de diameter van een cirkel exact gelijk aan π, daar komt geen benadering aan te pas. Maar fysisch gezien is de omtrek van een cirkel net zo min exact te bepalen als de diameter van diezelfde cirkel, dat heeft niets met irrationaliteit te maken.
  vrijdag 18 juli 2008 @ 10:34:42 #263
41885 kless
morgen? waarom niet overmorgen
pi_60183565
quote:
Op vrijdag 18 juli 2008 09:56 schreef The_stranger het volgende:

[..]

Dus eigenlijk kom het, kort door de bocht, erop neer dat de wiskunde prima werkt, mits je het op "papier" houdt, maar de "echte" wereld slechts kan benaderen?

En zo ja, heeft dat dan invloed op het gedrag van voornamelijk erg kleine deeltjes en reacties daarmee? Want als er inderdaad een "verschil" zit tussen de wiskunde en de echte wereld, zal dat vooral op kleine schaal de grootste invloed hebben...

Of gaat dat weer te ver?
ja, Model om de werkelijkheid te beschrijven met een paar ideeen.

Dat tweede gaat inderdaad tever. het gedrag van kleine deeltjes is lastig omdat je er met nog kleinere deel naar moet kijken en daar weet je het gedrag ook al niet van weet.
(*met stenen op mieren gooien om te zien of er mieren zijn en wat ze doen wil niet zo goed. Met zandkorreltjes maak je meer kans om te zien wat mieren zijn en doen.)
Vrouwen moeten niet zeiken over hun uiterlijk. Met hun innerlijk is veel meer mis.
iGEM
pi_60185673
quote:
Op vrijdag 18 juli 2008 09:56 schreef The_stranger het volgende:

[..]

Dus eigenlijk kom het, kort door de bocht, erop neer dat de wiskunde prima werkt, mits je het op "papier" houdt, maar de "echte" wereld slechts kan benaderen?

En zo ja, heeft dat dan invloed op het gedrag van voornamelijk erg kleine deeltjes en reacties daarmee? Want als er inderdaad een "verschil" zit tussen de wiskunde en de echte wereld, zal dat vooral op kleine schaal de grootste invloed hebben...
Da's een hele interessante vraag. Maar hoe groot het verschil is, hangt niet af van je lengteschalen, maar van het model wat je gebruikt. Het blijkt dat we met het huidige standaardmodel tot op 15 decimalen nauwkeurig zaken kunnen uitrekenen. Nou komt daar de moeilijkheid nog bij dat we daar altijd met benaderingen werken. Een reactie wordt vaak beschreven door iets wat alleen is uit te drukken in een machtreeks omdat het niet exact is te berekenen. En het enige wat je kunt doen met zo'n machtreeks is heel veel termen uitrekenen, maar je zult ze nooit alle oneindig uit kunnen rekenen.
pi_60186650
quote:
Op vrijdag 18 juli 2008 10:32 schreef Riparius het volgende:

[..]

Warrig betoog. De fout die je maakt is dat je irrationaliteit (wiskunde) en meetonnauwkeurigheid (fysica) met elkaar verwart. Een meting is altijd behept met een zekere meetonnauwkeurigheid, ook als het gaat om de meting van een grootheid die zich wiskundig gezien tot een andere grootheid verhoudt als de verhouding tussen twee gehele getallen. Wiskundig gezien is de verhouding tussen de omtrek en de diameter van een cirkel exact gelijk aan π, daar komt geen benadering aan te pas. Maar fysisch gezien is de omtrek van een cirkel net zo min exact te bepalen als de diameter van diezelfde cirkel, dat heeft niets met irrationaliteit te maken.
Waar ik op doelde was dat als we in de wiskunde kijken naar een cirkel, dan kun je de omtrek zeer precies berekenen. De verhouding diameter en omtrek is inderdaad precies π, maar de omtrek zelf is geen "heel" getal. Als je stelt dat de diameter x is , dan is de omtrek x maal π, maar de uitkomst is geen heel getal, maar een getal wat oneindig door loopt. De omtrek van die wiskunde cirkel is dus niet geheel bepaald, tenminste zo vat ik het op. (nu is dat voor de wiskunde vast geen probleem, maar vanuit de praktijk met bv. een meetlat en een wiel vind ik dat toch een vreemd idee)

Dan vroeg ik mij dus af hoe dat dan in praktijk was. Maar zoals Haushofer al zei, in de praktijk heb je helemaal geen perfecte cirkel, laat staan dat je met die ene formule een exacte omtrek kunt berekenen voor bijv. dat wiel . Ook heb je last van meet afwijkingen, zodoende kun je dus nooit de exacte omtrek vinden die je uitgerekend hebt.

Waar het voor mij op aan komt is dat je in de wiskunde wel kunt uitrekenen wat een omtrek is, ook al lijkt dat dan een benadering te zijn (vanwege de oneindigheid van π), maar die berekening is ook weer een benadering van de werkelijkheid, vanwege de onnauwkeurigheid in meten en vanwege het feit dat een perfecte cirkel in het echt niet bestaat (?)

In hoeverre heeft zoiets, en er zijn vast meer situaties te bedenken waarbij het systeem wat op papier precies klopt, in de praktijk onmogelijk na te maken is, invloed op wat er vanuit de theorie verwacht en voorspelt en wat men ziet en vindt? Kan het zo zijn dat dit soort "ongelijkheden" natuurkundigen op het verkeerde been kan zetten, of zie ik het helemaal verkeerd en is het totaal geen issue?
You can't convince a believer of anything; for their belief is not based on evidence, it's based on a deep seated need to believe
C. Sagan
  vrijdag 18 juli 2008 @ 18:40:38 #266
94782 Nieuwschierig
Pro bikini-lijn
pi_60194655
Als de diameter van een perfecte circel 100mm/pi is dan is de omtrek precies 100,00000000000000000mm
Wie dit leest is gek
pi_60203152
quote:
Op vrijdag 18 juli 2008 12:35 schreef The_stranger het volgende:

[..]

Waar ik op doelde was dat als we in de wiskunde kijken naar een cirkel, dan kun je de omtrek zeer precies berekenen. De verhouding diameter en omtrek is inderdaad precies π, maar de omtrek zelf is geen "heel" getal. Als je stelt dat de diameter x is , dan is de omtrek x maal π, maar de uitkomst is geen heel getal, maar een getal wat oneindig door loopt. De omtrek van die wiskunde cirkel is dus niet geheel bepaald, tenminste zo vat ik het op. (nu is dat voor de wiskunde vast geen probleem, maar vanuit de praktijk met bv. een meetlat en een wiel vind ik dat toch een vreemd idee)
Ik denk dat je probleem is dat je worstelt met het wiskundige begrip irrationaliteit. De omtrek van een cirkel ligt wiskundig gezien wel degelijk exact vast. Een irrationaal getal is net zo goed exact als een rationaal getal.
quote:
Dan vroeg ik mij dus af hoe dat dan in praktijk was. Maar zoals Haushofer al zei, in de praktijk heb je helemaal geen perfecte cirkel, laat staan dat je met die ene formule een exacte omtrek kunt berekenen voor bijv. dat wiel . Ook heb je last van meetafwijkingen, zodoende kun je dus nooit de exacte omtrek vinden die je uitgerekend hebt.
Nee, maar dat heeft uitsluitend te maken met fysische beperkingen zoals de altijd begrensde meetnauwkeurigheid, dat heeft niets met (vermeende) beperkingen van wiskundige aard te maken.
quote:
Waar het voor mij op aan komt is dat je in de wiskunde wel kunt uitrekenen wat een omtrek is, ook al lijkt dat dan een benadering te zijn (vanwege de oneindigheid van π), maar die berekening is ook weer een benadering van de werkelijkheid, vanwege de onnauwkeurigheid in meten en vanwege het feit dat een perfecte cirkel in het echt niet bestaat (?)
De onnauwkeurigheid bij dergelijke metingen wordt uitsluitend veroorzaakt door beperkingen van fysische aard, niet door beperkingen van wiskundige aard. Er is dus geen cumulatie van onnauwkeurigheden zoals je hier lijkt te willen suggereren. Overigens begrijp ik niet waarom je je zo vastbijt in die cirkel. De verhouding tussen de lengtes van de diagonaal en de zijde van een vierkant is ook irrationaal, terwijl die diagonaal toch gewoon een recht lijnstuk is. Daar al eens over nagedacht?
quote:
In hoeverre heeft zoiets, en er zijn vast meer situaties te bedenken waarbij het systeem wat op papier precies klopt, in de praktijk onmogelijk na te maken is, invloed op wat er vanuit de theorie verwacht en voorspelt en wat men ziet en vindt? Kan het zo zijn dat dit soort "ongelijkheden" natuurkundigen op het verkeerde been kan zetten, of zie ik het helemaal verkeerd en is het totaal geen issue?
Een wiskundige beschrijving van fysische verschijnselen is altijd een model dat uitgaat van zekere abstracties (simplificaties, vooronderstellingen). En het feit dat de werkelijkheid niet beantwoordt aan die simplificaties betekent dan inderdaad dat er discrepanties kunnen zijn tussen hetgeen je berekent en hetgeen je meet (de meetnauwkeurigheid in aanmerking genomen), maar dat is ook niet anders te verwachten. In ieder geval betekent dat an sich niet dat je wiskundige model voor een bepaald fysisch verschijnsel niet deugt, en al helemaal niet dat er met de wiskunde iets niet in orde zou zijn. Fysici weten dat wiskundige modellen voor fysische verschijnselen een abstractie zijn, dus ik zie niet in waarom ze hierdoor op het verkeerde been gezet zouden kunnen worden.
  zaterdag 19 juli 2008 @ 22:22:08 #268
121348 Erasmo
f/8 and be there.
pi_60215689
Ok iedereen bedankt voor het vochtvanger antwoord

Nog een vraagje: Als een gloeilamp 80% van de energie omzet in warmte, is dat in de winter erg? Je CV hoeft immers minder hard te werken
pi_60223033
quote:
Op zaterdag 19 juli 2008 22:22 schreef Erasmo het volgende:
Ok iedereen bedankt voor het vochtvanger antwoord

Nog een vraagje: Als een gloeilamp 80% van de energie omzet in warmte, is dat in de winter erg? Je CV hoeft immers minder hard te werken
Ja, je huis opwarmen met aardgas is goedkoper dan met electriciteit (dacht ik, heb geen bron )
pi_60395142
Hoe komt het dat jeuk moeilijker te negeren is dan pijn?
"I am an AVATAR from the planet ACTURUS" "Bill Hicks"
abonnement Unibet Coolblue Bitvavo
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')