Dankje, ik was al aan het zoeken maar ik kon er zo snel niets over vindenquote:Op dinsdag 7 maart 2006 20:00 schreef Nekto het volgende:
[..]
1 is wat Peano definieert als S(0), de opvolger van 0. En 2 is S(S(0)).
Huldequote:Op dinsdag 7 maart 2006 18:51 schreef trancethrust het volgende:
[..]
-1 x -1 = (-1 * -1) = ( 1 * -1 * 1 * -1) = - ( 1 * 1 * 1 * -1 ) = - ( 1 * -1 ) = --1 = 1
quote:Op dinsdag 7 maart 2006 18:51 schreef trancethrust het volgende:
[..]
-1 x -1 = (-1 * -1) = ( 1 * -1 * 1 * -1) = - ( 1 * 1 * 1 * -1 ) = - ( 1 * -1 ) = --1 = 1
het is een beetje onhandig opgeschreven maar het kloptquote:
Behalve dat het geen fuck uitlegt; het is een cirkelredenering. --1 = -1 x -1 = ? En dan wordt de aanname gemaakt dat --1 = 1.quote:Op woensdag 8 maart 2006 17:34 schreef McCarthy het volgende:
[..]
het is een beetje onhandig opgeschreven maar het klopt
ik dacht eerst ook "wat is dit"
nope het klopt wel alleen hij ligt niet elke stap toe.quote:Op woensdag 8 maart 2006 17:39 schreef Zyggie het volgende:
[..]
Behalve dat het geen fuck uitlegt; het is een cirkelredenering. --1 = -1 x -1 = ? En dan wordt de aanname gemaakt dat --1 = 1.
Het gaat me niet om die simpele stapjes maar om de conclusie die eraan verbonden wordt. -(-1) = 1 Maar dit is natuurlijk identiek aan -1(-1) = 1. Dit is dus geen bewijs.quote:Op woensdag 8 maart 2006 18:20 schreef McCarthy het volgende:
[..]
nope het klopt wel alleen hij ligt niet elke stap toe.
Onenigheid is de basis voor vooruitgang.quote:Op woensdag 8 maart 2006 18:26 schreef 14.gif het volgende:
Het bewijs is toch al geleverd? Waar doe je dan nog moeilijk over?
Ik had gewoon geen zin om uit te leggen dat een negatie van een negatie het origineel teruggaf, dat is wel duidelijk dacht ik zo. -1*(-1) is bovendien duidelijk iets anders dan --1, vandaar de redenering die eraan vooraf gaat.quote:Op woensdag 8 maart 2006 18:24 schreef Zyggie het volgende:
[..]
Het gaat me niet om die simpele stapjes maar om de conclusie die eraan verbonden wordt. -(-1) = 1 Maar dit is natuurlijk identiek aan -1(-1) = 1. Dit is dus geen bewijs.
-1 maal iets doen is niets anders dan de negatieve pakken. -1x-1 is dus duidelijk niet iets anders dan --1. Het kwam mij wat zinloos goochelen met getallen over. Het gaat nu trouwens meer over de definities van wiskunde.quote:Op woensdag 8 maart 2006 19:57 schreef trancethrust het volgende:
[..]
Ik had gewoon geen zin om uit te leggen dat een negatie van een negatie het origineel teruggaf, dat is wel duidelijk dacht ik zo. -1*(-1) is bovendien duidelijk iets anders dan --1, vandaar de redenering die eraan vooraf gaat.
Ja, nou, de groep van reeele getallen onder optelling heeft als eenheidselement het getal 0. Een inverse van elk willekeurig getal c is -c, want -c + c = 0. Hieruit volgt dat een inverse van een inverse van een willekeurig getal c gelijk is aan: -(-c) = c, want c is het enige getal dat onder optelling met -c het eenheidselement oplevert. Dit alles zonder het ooit te hebben over vermenigvuldiging. De '-' staat hier louter en alleen als inverse (negatie) teken.quote:Op woensdag 8 maart 2006 20:37 schreef Zyggie het volgende:
[..]
-1 maal iets doen is niets anders dan de negatieve pakken. -1x-1 is dus duidelijk niet iets anders dan --1. Het kwam mij wat zinloos goochelen met getallen over. Het gaat nu trouwens meer over de definities van wiskunde.
Sorry dat ik het zeg maar je gaat hier toch echt de fout inquote:Op dinsdag 7 maart 2006 16:59 schreef Nekto het volgende:
En weer fout, 1a + 1b = 1a/b + 1.
en waar staat een a dan voor?quote:Op maandag 6 maart 2006 22:28 schreef rudeonline het volgende:
[..]
Inderdaad, als een getal niet iets voorstelt, dan is zo'n getal eigenlijk gelijk aan 0. Getallen moeten iets voorstellen. Anders is 1 + 1 gewoon 0.
Ja, daar mist nog een factor b.quote:Op woensdag 8 maart 2006 22:46 schreef Maverick_tfd het volgende:
[..]
Sorry dat ik het zeg maar je gaat hier toch echt de fout in![]()
Mja maar je moet toch gewoon over altijd rekening mee houden? Dus ook imaginaire getallen als andere mogelijkheid niet kan. Anders is het wel erg makkelijk naar 1 kant te schuiven.quote:Op donderdag 9 maart 2006 13:24 schreef 14.gif het volgende:
Een negatieve wortel kan niet binnen de reele getallen, zodra je imaginaire getallen erbij betrekt dan is een imaginair getal de wortel van een negatief getal. En dan kun je uiteraard wel worteltrekken met negatieve getallen...
Stel dat je een getallensysteem op gaat stellen. Je begint bij de gehele getallen, want die kun je je voorstellen: je hebt bv 1 appel, 2 appels etc. Nou kun je 1 zo'n appel ook opsplitsen, dus zo krijg je de breuken; 1/2, 1/3 etc. Daarna kun je nog negatieve getallen invoeren, door te stellen dat als je 5 appels bij -3 appels optelt, dat hetzelfde is als 3 appels van 5 af te trekken. Dan heb je al een aardig stelsel te pakken. Als laatste wil je nog een nul-element invoeren; je kunt ook geen appels hebben. Een aantal appels plus 0 is dan weer gelijk aan een aantal appels.quote:Op donderdag 9 maart 2006 13:14 schreef sitting_elfling het volgende:
Hoe zit dat eigenlijk met imaginaire getallen?
-wortel 1 = immers i
maar een negatieve in een wortel kan niet, maar kan toch weer wel.
Want i x i = -1
Naja, ik was niet al te best in complexe getallen op de middelbare school
Nou ja, je kunt je afvragen of een complex getal nou zoveel raarder is als een breuk, of een irrationeel getal.quote:Op donderdag 9 maart 2006 13:49 schreef sitting_elfling het volgende:
[..]
Mja maar je moet toch gewoon over altijd rekening mee houden? Dus ook imaginaire getallen als andere mogelijkheid niet kan. Anders is het wel erg makkelijk naar 1 kant te schuiven.
Dat klopt, netjes uitgelegd. Mijn wiskunde leraar op de middelbare school zei altijd, het nieuwe stelsel bracht zo veel nieuwe mogelijkheden met zich mee, je kunt immers rekenen met dingen waar je eerst niet mee kon rekenen. Wees hij altijd naar de rekemachienquote:Op donderdag 9 maart 2006 13:50 schreef Haushofer het volgende:
[..]
Stel dat je een getallensysteem op gaat stellen. Je begint bij de gehele getallen, want die kun je je voorstellen: je hebt bv 1 appel, 2 appels etc. Nou kun je 1 zo'n appel ook opsplitsen, dus zo krijg je de breuken; 1/2, 1/3 etc. Daarna kun je nog negatieve getallen invoeren, door te stellen dat als je 5 appels bij -3 appels optelt, dat hetzelfde is als 3 appels van 5 af te trekken. Dan heb je al een aardig stelsel te pakken. Als laatste wil je nog een nul-element invoeren; je kunt ook geen appels hebben. Een aantal appels plus 0 is dan weer gelijk aan een aantal appels.
Maar nu komt de stelling van pythagoras; die stelt dat voor een rechthoekige driehoek de som van de kwadraten van de 2 kleine zijden gelijk is aan het kwadraat van de schuine, langste zijde. Neem nou es een driehoek met kleine zijden 1. Dan is de schuine zijde wortel2. Dan verwacht je binnen je stelsel, dat dit getal is te schrijven als een breuk. Maar je kunt heel makkelijk aantonen, met een bewijs uit het ongerijmde, dat je dat niet gaat lukken : wortel 2 is niet te schrijven als een breuk, maar is een zogenaamd irrationeel getal. Wat doe je nu? Stellen dat wortel 2 niet bestaat, of je getallensysteem uitbreiden met irrationele getallen?
Zelfde voor complexe getallen; je komt een vergelijking als x2+1=0 tegen. Dan kun je 2 dingen doen: je getallenstelsel uitbreiden zodat je een oplossing kunt vinden voor dit probleem, of stellen dat de oplossing simpelweg niet bestaat. Als je nou die oplossingen meetelt in je stelsel, dan krijg je complexe getallen. Die schijnbaar simpele uitbreiding legt een hele nieuwe structuur aan.
Daar komt -1 resp. 1 uit?quote:Op donderdag 9 maart 2006 17:00 schreef thabit het volgende:
(+/-)(-wortel(2) + wortel(2)i)/2.
0.5wortel(2)+0.5wortel(2)i volgens mijquote:Op donderdag 9 maart 2006 16:30 schreef Nekto het volgende:
Okay, i^2 = -1, maar wat^2 = -i?
^o)quote:Op donderdag 9 maart 2006 17:15 schreef freiss het volgende:
[..]
0.5wortel(2)+0.5wortel(2)i volgens mij
Oh '-i'quote:Op donderdag 9 maart 2006 19:30 schreef trancethrust het volgende:
[..]
^o)
Wat is er mis met Sqrt(-i) ?
Heel wat. Er is namelijk geen wortelfunctie gedefineerd op de complexe getallen, omdat deze twee waarden zou moeten aannemen en het niet mogelijk is om een keuze zodanig te maken dat deze functie continu is. Dus wortels uit complexe getallen gaan we niet zo opschrijven, tenzij je duidelijk aangeeft welke van de twee wortels je bedoelt.quote:Op donderdag 9 maart 2006 19:30 schreef trancethrust het volgende:
[..]
^o)
Wat is er mis met Sqrt(-i) ?
Oke, bedanktquote:Op vrijdag 10 maart 2006 21:08 schreef -Pepe- het volgende:
1 = -1
immers,
1 = sqrt(1*1) = sqrt( (-1)^2*1) = sqrt(i^2 * i^2)*sqrt(1) = sqrt(i^2)*sqrt(i^2) = i*i = -1
En dan vergeten we voor het gemak dat er uit sqrt(1) naast 1 ook -1 uit kan komen?quote:Op vrijdag 10 maart 2006 21:08 schreef -Pepe- het volgende:
1 = -1
immers,
1 = sqrt(1*1) = sqrt( (-1)^2*1) = sqrt(i^2 * i^2)*sqrt(1) = sqrt(i^2)*sqrt(i^2) = i*i = -1
|
|
| Forum Opties | |
|---|---|
| Forumhop: | |
| Hop naar: | |