Voor ln(x), x = √(e) geldt natuurlijk ln(x) = 1/2. Waarom? Kijk even naar de definitie van het natuurlijk logaritme.quote:Op zaterdag 4 oktober 2014 13:54 schreef GeschiktX het volgende:
P.s;
Stel ik heb
(1 - 2 ln x) / x³
En x = √e
Hoe kan ik dan de getallenlijn uit mijn hoofd opstellen..
Ik weet het dus niet door die 2 ln x, evenals die wortel e etc..
Je snapt er waarschijnlijk nog steeds geen klote van. Vervolgens als je hier een vraag post doe je dat maar op juiste wijze, okay?quote:Op zaterdag 4 oktober 2014 13:03 schreef BroodjeKebab het volgende:
[..]
Ik ben er al uit.. De vraag is best lang en ik zou er een foto van moeten maken, maar mijn telefoon is leeg...
Dus ik kan eigenlijk het volgende zeggen:quote:Op zaterdag 4 oktober 2014 14:15 schreef Amoeba het volgende:
[..]
Voor ln(x), x = √(e) geldt natuurlijk ln(x) = 1/2. Waarom? Kijk even naar de definitie van het natuurlijk logaritme.
x³ ≠ 0, we hebben (1-2*½) = 0 zodat we in de teller 0 krijgen en in de noemer niet. Ergo, f(x=√(e)) = 0.
Ik snap niet wat je nu precies moet maken. Neem de vraag eens letterlijk over?quote:Op zaterdag 4 oktober 2014 14:25 schreef GeschiktX het volgende:
[..]
Dus ik kan eigenlijk het volgende zeggen:
1 - 2 * 1/2 ?
Wat ik bedoelde te zeggen; als ln x = 1/2, dan neem ik aan dat ik voor ln x gewoon 1/2 kan invullen?quote:Op zaterdag 4 oktober 2014 14:26 schreef Amoeba het volgende:
[..]
Ik snap niet wat je nu precies moet maken. Neem de vraag eens letterlijk over?
Nee, alleen dan en slechts dan als x = √(e). Geef nu eens de opgave!quote:Op zaterdag 4 oktober 2014 14:36 schreef GeschiktX het volgende:
[..]
Wat ik bedoelde te zeggen; als ln x = 1/2, dan neem ik aan dat ik voor ln x gewoon 1/2 kan invullen?
Vind de lokale extreme punten en de buigpunten van:quote:Op zaterdag 4 oktober 2014 14:39 schreef Amoeba het volgende:
[..]
Nee, alleen dan en slechts dan als x = √(e). Geef nu eens de opgave!
Het rechterdeel is niet afhankelijk van a en zou je dus al kunnen tekenen. Van het linker gedeelte moet je de a zo kiezen, dat het aansluit op het rechterstuk.quote:Op zaterdag 4 oktober 2014 15:39 schreef RustCohle het volgende:
''For what value of a is the following function continuous for all x?''
f(x) =
ax - 1 , for x -< 1 (gelijk of kleiner dan 1)
3x² + 1 , for x > 1
Ik snap die continiuiteit niet. Wat ik er wel van weet is dat je de grafiek in één keer moet kunnen tekenen zonder je pen van het blaadje af te halen.
Ik heb het niet begrepen..? Ik zou hiervoor dus een grafiek moeten tekenen?quote:Op zaterdag 4 oktober 2014 15:40 schreef Janneke141 het volgende:
[..]
Het rechterdeel is niet afhankelijk van a en zou je dus al kunnen tekenen. Van het linker gedeelte moet je de a zo kiezen, dat het aansluit op het rechterstuk.
Wat zou f(1) moeten zijn?
Nee, dat hoeft niet - maar ik gaf het als voorbeeld om aan te sluiten op je eigen tekst.quote:Op zaterdag 4 oktober 2014 15:45 schreef RustCohle het volgende:
[..]
Ik heb het niet begrepen..? Ik zou hiervoor dus een grafiek moeten tekenen?
Bij de paraboolfunctie is f(1) = 4quote:Op zaterdag 4 oktober 2014 15:50 schreef Janneke141 het volgende:
[..]
Nee, dat hoeft niet - maar ik gaf het als voorbeeld om aan te sluiten op je eigen tekst.
In niet al te wiskundige taal uitgelegd houdt continuïteit inderdaad in dat je de grafiek van een functie kan tekenen zonder dat je je potlood van het papier hoeft te halen.
De functie in je post bestaat uit twee stukken: het gedeelte links van de x-waarde '1' is een rechte lijn waarvan de richtingscoëfficiënt 'a' is - en die a moeten we nog uitrekenen. Het gedeelte rechts van de x-waarde 1 is een gedeelte van een parabool.
Wat we dus moeten doen is de 'a' zo kiezen, dat die rechte bij x=1 precies aan gaat sluiten op (de grafiek van) 3x² + 1. Anders gezegd: als we x=1 invullen in ofwel het ene deel van het functievoorschrift, ofwel het andere, dan moet er hetzelfde uitkomen.
Vandaar mijn vraag: wat zou f(1) moeten zijn?
Juist, zo moet dat.quote:Op zaterdag 4 oktober 2014 16:00 schreef RustCohle het volgende:
[..]
Bij de paraboolfunctie is f(1) = 4
Dus dan moet het ook 4 zijn bij ax -1
a * 1 - 1 = 4
a * 1 = 5
a = 5
Dus: correct?
Goed, begin eens met een tekenschema van de functie en de eerste afgeleide.quote:Op zaterdag 4 oktober 2014 14:44 schreef GeschiktX het volgende:
[..]
Vind de lokale extreme punten en de buigpunten van:
y= (x² + 2x) e-x
Weet jij hoe limieten werken?quote:
Ik kan me voorstellen dat je hierbij een denkfout maakt, maar als je de onderstaande punten meeneemt in je redenering moet je er wel uitkomen:quote:Op zaterdag 4 oktober 2014 16:17 schreef RustCohle het volgende:
[..]
Weet jij hoe limieten werken?
Evaluate the following limits:
(x + | x | )/ x lim --> 0-
Ik kwam gewoon op 2 uit, maar ik ging ervan uit dat het gewoon x + x / x werd omdat de absolute waarde het altijd positief maakt, maar ik zag het volgende:
[ afbeelding ]
[ afbeelding ]
Nee toch?quote:Op zaterdag 4 oktober 2014 16:28 schreef RustCohle het volgende:
(x - 3) / (x² + 1) met limiet --> oneindig:
Ik deed:
(1/x - 3/x²) / (1 + 1/x²)
Mijn beredenering was als volgt: als x naar oneindig gaat wordt 1/x = oneindig en 3/x² = oneindig. De noemer ook en dit resulteert in
oneindig / oneindig = 1.
Kan je bewijzen datquote:Op zaterdag 4 oktober 2014 16:28 schreef RustCohle het volgende:
Mijn beredenering was als volgt: als x naar oneindig gaat wordt 1/x = oneindig en 3/x² = oneindig. De noemer ook en dit resulteert in
Als je een klein getal deelt door een heel groot getal dan blijft er weinig over..quote:
quote:Op zaterdag 4 oktober 2014 16:38 schreef RustCohle het volgende:
[..]
Als je een klein getal deelt door een heel groot getal dan blijft er weinig over..
Stel je hebt 1 appel en je wilt het delen door 1000000000 mensen, dan blijft er nauwelijks wat over om te delen met die 1000000000 mensen.
Stel je hebt lim (x → ∞) f(x), f(x) = 2x/xquote:Op zaterdag 4 oktober 2014 16:28 schreef RustCohle het volgende:
(x - 3) / (x² + 1) met limiet --> oneindig:
Ik deed:
(1/x - 3/x²) / (1 + 1/x²)
Mijn beredenering was als volgt: als x naar oneindig gaat wordt 1/x = oneindig en 3/x² = oneindig. De noemer ook en dit resulteert in
oneindig / oneindig = 1.
Kun je beter iets als ln(x)/x nemen, dan heeft hij nog iets om echt over na te denken. Maar limieten blijven lastig. Jaren geleden was er iemand die met een drogredenering meende te kunnen aantonen dat limh→0 (eh − 1)/h = 1. Je had, zo redeneerde hij, limh→0 eh = 1 en ook limh→0 (1 + h) = 1 en 'dus' was volgens hem ook limh→0 (eh − 1)/h = limh→0 ((1 + h) − 1)/h = 1. Maar die vlieger gaat niet op.quote:Op zaterdag 4 oktober 2014 18:12 schreef Amoeba het volgende:
[..]
Stel je hebt lim (x → ∞) f(x), f(x) = 2x/x
Dan krijg je dus ook ∞/∞ = 1?
Nee, want de teller blijft groter dan de noemer vanwege de 2.quote:Op zaterdag 4 oktober 2014 18:12 schreef Amoeba het volgende:
[..]
Stel je hebt lim (x → ∞) f(x), f(x) = 2x/x
Dan krijg je dus ook ∞/∞ = 1?
Niet zo opschrijven, 0/0 heeft geen betekenis en dus kun je ook niet zeggen dat dit gelijk is aan hetgeen in het linkerlid staat, want dat heeft immers wél betekenis.quote:Op zaterdag 4 oktober 2014 19:15 schreef BroodjeKebab het volgende:
Ik moet de l'Hopital regel toepassen op:
lim x --> 0 [ 2(1+x)1/2 - 2 - x ] / [ 2(1 + x + x²)-1/2 -2 - x ] = 0 / 0
Om te beginnen:quote:Dus ik moet de l'Hopital regel toepassen en dat is niet meer dan de afgeleide te nemen van de teller afzonderlijk en de noemer afzonderlijk.
Ik kwam uit op:
[ ( 1+x)-1/2 - 1 ] / [ 2x ( 1+x + x²) -1/2 - 1 ]
Maar het moest zijn : (maar ik weet niet hoe ze op die 1 komen naast die 2x... o
[ ( 1+x)-1/2 - 1 ] / [ ( 1 + 2x) ( 1+x + x²) -1/2 - 1 ]
[ 2x ( 1+x + x²) -1/2 - 1 ]quote:Op zaterdag 4 oktober 2014 19:22 schreef Riparius het volgende:
[..]
Niet zo opschrijven, 0/0 heeft geen betekenis en dus kun je ook niet zeggen dat dit gelijk is aan hetgeen in het linkerlid staat, want dat heeft immers wél betekenis.
[..]
Om te beginnen:
d(1 + x + x²)/dx = 1 + 2x
En wat krijg je dan als je je noemer differentiëert naar x?
Nee. Kijk nu eerst eens naar die exponent van (1 + x + x²) in je noemer. Die is toch −½ en niet ½, of heb je daar soms een typefout gemaakt?quote:
Het was een typfout. Heb het bewerkt..quote:Op zaterdag 4 oktober 2014 19:36 schreef Riparius het volgende:
[..]
Nee. Kijk nu eerst eens naar die exponent van (1 + x + x²) in je noemer. Die is toch −½ en niet ½, of heb je daar soms een typefout gemaakt?
En als je weet dat
d(1 + x + x²)/dx = 1 + 2x
en dat je de kettingregel moet gebruiken, wat krijg je dan?
Je hebt de verkeerde regel bewerkt in je oorspronkelijke post. Pas dat eerst eens aan, en nu goed, anders blijven we heen en weer praten. Als ik het nu goed begrijp bedoel je dus dit.quote:Op zaterdag 4 oktober 2014 19:38 schreef BroodjeKebab het volgende:
[..]
Het was een typfout. Heb het bewerkt..
exactquote:Op zaterdag 4 oktober 2014 19:44 schreef Riparius het volgende:
[..]
Je hebt de verkeerde regel bewerkt in je oorspronkelijke post. Pas dat eerst eens aan, en nu goed, anders blijven we heen en weer praten. Als ik het nu goed begrijp bedoel je dus dit.
Of je het met ln of log doet maakt niet uit. Het grootste verschil tussen log en ln zit hem in het 'basis'getal. Bij log is het basisgetal 10 en bij ln is dat e. Het getal e is een belangrijke wiskundige constante, het grondtal van de natuurlijke logaritme en staat dus voor 2,718281828459...quote:Op zaterdag 4 oktober 2014 19:55 schreef droommoord het volgende:
simpel vraagje, hoe bereken je ook alweer dit:
500 x 1.04^(N) = 1000
en dan de manier met log of ln, kan het even nergens vinden, heb het ooit geweten maar ben het even kwijt.
liefde <3, scheelt hoop tijd, deed het nu met trial en errorquote:Op zaterdag 4 oktober 2014 20:03 schreef Super-B het volgende:
[..]
Of je het met ln of log doet maakt niet uit. Het grootste verschil tussen log en ln zit hem in het 'basis'getal. Bij log is het basisgetal 10 en bij ln is dat e. Het getal e is een belangrijke wiskundige constante, het grondtal van de natuurlijke logaritme en staat dus voor 2,718281828459...
500 x 1,04^N = 1000
1,04^N = 1000/500
1,04^N = 2
En om vervolgens achter het exponent te komen, moet je ln of log gebruiken en dat doe je als volgt:
ln 2 / ln 1,04 = 17,67
quote:Op zaterdag 4 oktober 2014 18:57 schreef Riparius het volgende:
[..]
Kun je beter iets als ln(x)/x nemen, dan heeft hij nog iets om echt over na te denken. Maar limieten blijven lastig. Jaren geleden was er iemand die met een drogredenering meende te kunnen aantonen dat limh→0 (eh − 1)/h = 1. Je had, zo redeneerde hij, limh→0 eh = 1 en ook limh→0 (1 + h) = 1 en 'dus' was volgens hem ook limh→0 (eh − 1)/h = limh→0 ((1 + h) − 1)/h = 1. Maar die vlieger gaat niet op.
Ik had een poosje geleden nog een aardig citaat voor hem als uitsmijter.
Inderdaad, je kunt 1 niet naar 3 sturen (en ook niet naar 4, maar 1 tegenvoorbeeld is voldoende) met die ondergroep, dus is-ie niet transitief.quote:Op zaterdag 4 oktober 2014 20:27 schreef Diacetylmorfine het volgende:
Ik heb nog een vraag. Ik heb een uitleg als volgt:
A subgroup H of the permutation group Sn on n letters is called transitive if for every pair of elements x,y from X={1,...,n}, there exists an element f in H for which f(x)=y.
En een bijbehorende oefening:
In the subgroup diagram of A4, determine for each group whether it is transitive or not.
Een ondergroep van A4 is {e, (12)(34)}, X={1,2,3,4} maar hoe moet ik for every pair of elements x,y from X opvatten? Betekent dat er een permutatie in de ondergroep moet bestaan die het element op positie y op positie x plaatst? Want die bestaat niet; f(1,2) != 3,4 en vice versa.
Ah, bedankt! Ik was zelf aan het puzzelen of ze niet bedoelden dat twee woorden op elkaar afgebeeld konden worden, in plaats van twee elementen van een woord. Ik heb een hoorcollege gemist, en laat daar nou net stof behandeld zijn die niet in het boek staat, maar wel nodig is voor een inleveropgave.quote:Op zaterdag 4 oktober 2014 21:19 schreef thabit het volgende:
[..]
Inderdaad, je kunt 1 niet naar 3 sturen (en ook niet naar 4, maar 1 tegenvoorbeeld is voldoende) met die ondergroep, dus is-ie niet transitief.
Dat zijn de inverteerbare elementen onder vermenigvuldiging. En die vormen een groep.quote:Op zaterdag 4 oktober 2014 22:46 schreef Diacetylmorfine het volgende:
[..]
Ah, bedankt! Ik was zelf aan het puzzelen of ze niet bedoelden dat twee woorden op elkaar afgebeeld konden worden, in plaats van twee elementen van een woord. Ik heb een hoorcollege gemist, en laat daar nou net stof behandeld zijn die niet in het boek staat, maar wel nodig is voor een inleveropgave.
Er is er nog zo een die ik niet helemaal duidelijk krijg met behulp van Google.
Let Z/n denote the ring of residue classes modulo n. Two m x m-matrices with entries from Z/n can be added and multiplied together, just like matrices over the ring of real numbers. This makes the set of such matrices into a ring M(m,n). Let GL(m,n) denote the group of units M(m,n).
We zijn langs het onderwerp van ringen gekomen, maar zijn er eigenlijk niet mee aan de slag gegaan. Wat zijn de 'units' van een ring? De inverteerbare elementen? En, zijn dit dan inverteerbare elementen onder optelling of vermenigvuldiging?
Die orde is niet oneindig, want je werkt over Z/2Z, dus A2=I.quote:Een van de bijbehorende oefeningen is namelijk:
Prove that GL(2,2) is isomorphic to S3.
Bekend is dat alle elementen van S3 eindige orde hebben, maar onder vermenigvuldiging heeft het element A uit GL(2,2):
[1 1]
[0 1]
oneindige orde, want An =
[1 n]
[0 1]
dit zou betekenen dat onder vermenigvuldiging dit isomorfisme niet bestaat, want een isomorfisme behoudt de orde van een element.
Is dat de definitie van GL(m,n), en bestaat dan ook zo'n groep voor optelling?quote:Op zaterdag 4 oktober 2014 22:52 schreef thabit het volgende:
[..]
Dat zijn de inverteerbare elementen onder vermenigvuldiging. En die vormen een groep.
Auw, misschien wordt het toch wat te laat vanavond.quote:Op zaterdag 4 oktober 2014 22:52 schreef thabit het volgende:
[..]
Die orde is niet oneindig, want je werkt over Z/2Z, dus A2=I.
De gehele ring vormt per definitie een groep onder optelling. Een abelse groep zelfs.quote:Op zaterdag 4 oktober 2014 22:57 schreef Diacetylmorfine het volgende:
[..]
Is dat de definitie van GL(m,n), en bestaat dan ook zo'n groep voor optelling?
Die ga ik zo even voor mezelf bevestigen, ter oefening. Maar wat ik bedoelde met mijn vraag is, als van een algemene ring GL de groep van elementen is die inverteerbaar zijn onder vermenigvuldiging, bestaat dan ook zo'n aftakking specifiek voor elementen die inverteerbaar zijn onder optelling? En is er een reden waarom er een afzonderlijke groep is zoals GL?quote:Op zaterdag 4 oktober 2014 22:59 schreef thabit het volgende:
[..]
De gehele ring vormt per definitie een groep onder optelling. Een abelse groep zelfs.
GL is een notatie die alleen voor matrices en lineaire transformaties wordt gebruikt. Als R een ring is, noteer je de eenhedengroep doorgaans met R* of R×.quote:Op zaterdag 4 oktober 2014 23:05 schreef Diacetylmorfine het volgende:
[..]
Die ga ik zo even voor mezelf bevestigen, ter oefening. Maar wat ik bedoelde met mijn vraag is, als van een algemene ring GL de groep van elementen is die inverteerbaar zijn onder vermenigvuldiging, bestaat dan ook zo'n aftakking specifiek voor elementen die inverteerbaar zijn onder optelling? En is er een reden waarom er een afzonderlijke groep is zoals GL?
Ahzo, natuurlijk. Onder vermenigvuldiging volstaat een monoïde, ik trok deze lijn ten onrechte door naar optelling. Bedankt voor je tijd op de zaterdagavond.quote:Op zaterdag 4 oktober 2014 23:10 schreef thabit het volgende:
[..]
GL is een notatie die alleen voor matrices en lineaire transformaties wordt gebruikt. Als R een ring is, noteer je de eenhedengroep doorgaans met R* of R×.
Er bestaat geen specifieke aftakking voor elementen inverteerbaar onder optelling, want alle elementen van een ring zijn inverteerbaar onder optelling.
Door de definitie van de afgeleide functie te gebruiken:quote:Op zondag 5 oktober 2014 01:23 schreef Super-B het volgende:
Hoe kan ik berekenen of een functie differentieerbaar is of niet (ofwel aantonen)?
Een reële functie f van een reële variabele is continu in een punt x = a indien er voor elke ε > 0 een δ > 0 bestaat zodanig datquote:Ook ben ik benieuwd hoe ik de continuïteit van een functie kan berekenen/aantonen (dus of een functie continu of discontinu is).
Kun je een voorbeeld geven w.b.t. de berekening voor de continuiteit en differentieerbaarheid a.d.h.v. een voorbeeldfunctie? Want het voorbeeld met | x | heb ik niet begrepen.quote:Op zondag 5 oktober 2014 04:38 schreef Riparius het volgende:
[..]
Door de definitie van de afgeleide functie te gebruiken:
Als deze limiet bestaat voor een gegeven x = x0 dan is de functie f differentieerbaar in het punt x = x0. Bestaat deze limiet niet, dan is de functie f niet differentieerbaar in het punt x = x0.
Je kunt ook de volgende equivalente definitie gebruiken voor de afgeleide f'(a) van een functie f in een punt x = a:
[..]
Een reële functie f van een reële variabele is continu in een punt x = a indien er voor elke ε > 0 een δ > 0 bestaat zodanig dat
voor elke x zodanig dat
Is niet aan deze voorwaarde voldaan, dan is de functie f niet continu in het punt x = a.
Een equivalente definitie is dat de functie f continu is in x = a indien
Deze equivalente formulering houdt nauw verband met de definitie van een limiet. We zeggen dat
als er voor elke ε > 0 een δ > 0 bestaat zodanig dat
voor elke x zodanig dat
Merk op dat we hier, anders dan bij de ε, δ definitie van continuïteit, x = a uitsluiten: de limiet van f(x) voor x → a kan ook bestaan als f(x) niet eens is gedefinieerd voor x = a. Het is voor het bestaan van een limiet van f(x) voor x → a echter wel nodig dat f(x) is gedefinieerd voor elke x ≠ a in een omgeving van het punt x = a, anders kan immers onmogelijk voldaan worden aan deze definitie. Dit is fundamenteel voor de definitie van de afgeleide, want f'(a) is gedefinieerd als de limiet van het differentiequotiënt (f(x) − f(a))/(x − a) voor x → a, en dit quotiënt is niet gedefinieerd voor x = a omdat dit quotiënt voor x = a reduceert tot 0/0 en dat heeft geen betekenis.
Bovenstaande definitie van limx→a f(x) = L is niets anders dan een formele vorm van wat we ons hier intuïtief bij voorstellen, namelijk dat we f(x) willekeurig dicht tot de waarde L kunnen laten naderen als we x maar voldoende dicht in de buurt van a kiezen. Om het bestaan van een limiet formeel aan te tonen moeten we laten zien dat er voor elke ε > 0 een δ > 0 bestaat die aan het in de definitie gestelde voldoet. We moeten dan dus een existentiebewijs leveren, en in de praktijk komt dit erop neer dat we laten zien dat we voor een willekeurige gegeven ε > 0 zo'n δ > 0 kunnen construeren. Een formeel bewijs voor de differentieerbaarheid of voor de continuïteit van een functie f in een punt x = a komt zo dus neer op een ε, δ bewijs.
Een eenvoudig gevolg van de definities van continuïteit en differentieerbaarheid is dat een reële functie f van een reële variabele die differentieerbaar is in x = a ook continu is in x = a. Immers, uit
volgt direct dat
en
is equivalent met
Differentieerbaarheid impliceert dus continuïteit, maar je mag dit niet omkeren: continuïteit impliceert geen differentieerbaarheid. Anders gezegd, continuïteit is een noodzakelijke maar geen voldoende voorwaarde voor differentieerbaarheid. Een eenvoudig voorbeeld: de functie f: R → R met als functievoorschrift f(x) = |x| is wel continu in het punt x = 0 maar niet differentieerbaar in het punt x = 0.
Probeer het zelf eens met de limiet van de afgeleide om te kijken of het wel of niet differentieerbaar is.quote:Op zondag 5 oktober 2014 10:58 schreef Super-B het volgende:
[..]
Kun je een voorbeeld geven w.b.t. de berekening voor de continuiteit en differentieerbaarheid a.d.h.v. een voorbeeldfunctie? Want het voorbeeld met | x | heb ik niet begrepen.
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |