Het gaat in jouw plaatje niet over een afgeleide. Er staat een gelijkheid waar ze links en rechts de natuurlijke logaritme op loslaten.quote:Op maandag 29 september 2014 16:53 schreef RustCohle het volgende:
[ afbeelding ]
Ben ik nou gek of niet? Ik denk zelf toch echt steeds dat het moet resulteren naar b * 1/x en dus b/x ipv b.. als afgeleide..
Oeps.. Plaatje uploaden ging mis..quote:Op maandag 29 september 2014 16:56 schreef Janneke141 het volgende:
[..]
Het gaat in jouw plaatje niet over een afgeleide. Er staat een gelijkheid waar ze links en rechts de natuurlijke logaritme op loslaten.
Dat heb ik begrepen. Vind het alleen frappant.. Aangezien de afgeleide van een ln functie altijd 1 / .. is.. Dat ln A weggaat begrijp ik sowieso (omdat het een constante is.)quote:Op maandag 29 september 2014 17:25 schreef Janneke141 het volgende:
Beter dan de in rood geschreven tekst die ernaast staat kan ik het eigenlijk ook niet uitleggen.
Substitueer ln x = u en differentieer daarna naar u.
Na de substitutie staat er geen ln-functie meer.quote:Op maandag 29 september 2014 17:27 schreef RustCohle het volgende:
[..]
Dat heb ik begrepen. Vind het alleen frappant.. Aangezien de afgeleide van een ln functie altijd 1 / .. is..
Ja maar stel je hebtquote:Op maandag 29 september 2014 17:28 schreef Janneke141 het volgende:
[..]
Na de substitutie staat er geen ln-functie meer.
Je leidt hier af naar ln x, niet naar x.quote:Op maandag 29 september 2014 17:27 schreef RustCohle het volgende:
[..]
Dat heb ik begrepen. Vind het alleen frappant.. Aangezien de afgeleide van een ln functie altijd 1 / .. is.. Dat ln A weggaat begrijp ik sowieso (omdat het een constante is.)
Het is voor je begrip van de techniek van belang dat je weet wat je precies doet. 'Wegstrepen' is natuurlijk geen toegestane handeling - wat doe je nu precies in je poging om de uitdrukking te herschrijven? Wat gebeurt er met die eax?quote:
Die kunnen weg, omdat er in de twee termen (in de teller) eax staat en in de noemer.quote:Op maandag 29 september 2014 17:43 schreef Janneke141 het volgende:
[..]
Het is voor je begrip van de techniek van belang wat je weet wat je precies doet. 'Wegstrepen' is natuurlijk geen toegestane handeling - wat doe je nu precies in je poging om de uitdrukking te herschrijven? Wat gebeurt er met die eax?
Dat klopt. Dus wat doe je ermee?quote:
SPOILEROm spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.Opinion is the medium between knowledge and ignorance (Plato)
quote:Op maandag 29 september 2014 17:46 schreef Janneke141 het volgende:
[..]
Dat klopt. Dus wat doe je ermee?Die kun je delen door e^axSPOILEROm spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.
OK, nu we weten wat we eigenlijk aan het doen zijn (volgende keer gewoon in je eerste post netjes opschrijven!) gaan we kijken hoe dat dan werkt:quote:
Wat doe je in het tweede waardoor die x * weggaat en waarom verdwijnt die p-1 en komt er een +1 te staan?quote:Op maandag 29 september 2014 17:55 schreef Janneke141 het volgende:
[..]
OK, nu we weten wat we eigenlijk aan het doen zijn (volgende keer gewoon in je eerste post netjes opschrijven!) gaan we kijken hoe dat dan werkt:
x * (pxp-1 eax + xp aeax ) / xp eax
= pxp eax + xp+1 aeax ) / xp eax
= xp eax(p + ax) / xp eax
Nu in teller en noemer delen door xp eax, en er blijft (p+ax) over.
Ooit van vermenigvuldigingen gehoord?quote:Op maandag 29 september 2014 18:07 schreef Super-B het volgende:
[..]
Wat doe je in het tweede waardoor die x * weggaat en waarom verdwijnt die p-1 en komt er een +1 te staan?
Jaquote:Op maandag 29 september 2014 18:09 schreef t4rt4rus het volgende:
[..]
Ooit van vermenigvuldigingen gehoord?
Dat hoeft ook niet, daarom schrijf ik tussenstappen op. Wen jezelf ook aan om dat te doen en om vooral niet teveel in één stap te willen doen.quote:Ik kan het niet 'zien' in één keer...
De haakjes uitwerken; er staat iets van de vorm a(b+c) en dat schrijf ik als ab+ac. Bedenk daarbij dat x*xp-1 = xpquote:Op maandag 29 september 2014 18:07 schreef Super-B het volgende:
[..]
Wat doe je in het tweede waardoor die x * weggaat en waarom verdwijnt die p-1 en komt er een +1 te staan?
Als het uit zou maken had ik het wel anders opgeschreven.quote:Op het einde; zie ik het ook niet..? Hoe moet ik die vermenigvuldiging zien?
(.....) * (....) of alleen die e^ax * (p + ax) .. en dan die x^p op het einde?
Het feit dat je je erover verbaast bewijst nu juist dat je het niet begrijpt.quote:Op maandag 29 september 2014 17:27 schreef RustCohle het volgende:
[..]
Dat heb ik begrepen. Vind het alleen frappant..
Opmerkingen als deze laten zien dat je alleen maar probeert 'regeltjes' toe te passen zonder echt te begrijpen wat het allemaal voorstelt. OllieWilliams had hier een correcte opmerking die je waarschijnlijk niet hebt begrepen.quote:Aangezien de afgeleide van een ln functie altijd 1 / .. is..
Je hebtquote:Dat ln A weggaat begrijp ik sowieso (omdat het een constante is.)
Je snapt toch dat een product niet hetzelfde is als een som?quote:Op dinsdag 30 september 2014 10:39 schreef Brainstorm245 het volgende:
Ik heb even de Leibniz notatie posts van Riparius gelezen, ik heb het wel begrepen, maar ben toch lichtelijk verward geworden.. en dan is het om hoe de regel werkt, want praktisch gezien begrijp ik dat wel als ik letters en getallen zie, maar in notatievorm ben ik nog lichtelijk verward..
Stel je hebt
d F(x) / dx ofwel F'(x) waarbij F(x) = f(x) * g(x)
Waarom is de afgeleide dan:
f'(x) * g(x) + f(x) * g'(x)
en niet:
f'(x) * x' * g(x) + f(x) * g'(x) * x
Want
dY / dI = F'(Y) dY/dI + 1 als Y = f(Y) + I
Je hebt eerder de tip gekregen om niet zomaar scans/foto's met rode strepen te plaatsen, maar om nauwkeuriger aan te geven wat je niet begrijpt.quote:Op dinsdag 30 september 2014 10:53 schreef Brainstorm245 het volgende:
Groen is wat ik begrijp en rood wat ik niet begrijp.
Je probeert nu een heleboel zaken op één hoop te gooien. Een post als deze laat mij zien dat er in jouw hoofd nog steeds grote verwarring heerst over heel basale zaken, en dat je daarom teksten zoals in je foto's niet begrijpt.quote:Op dinsdag 30 september 2014 10:39 schreef Brainstorm245 het volgende:
Ik heb even de Leibniz notatie posts van Riparius gelezen, ik heb het wel begrepen, maar ben toch lichtelijk verward geworden.. en dan is het om hoe de regel werkt, want praktisch gezien begrijp ik dat wel als ik letters en getallen zie, maar in notatievorm ben ik nog lichtelijk verward..
Stel je hebt
d F(x) / dx ofwel F'(x) waarbij F(x) = f(x) * g(x)
Waarom is de afgeleide dan:
f'(x) * g(x) + f(x) * g'(x)
en niet:
f'(x) * x' * g(x) + f(x) * g'(x) * x
Want
dY / dI = F'(Y) dY/dI + 1 als Y = f(Y) + I
Ik krijg colleges erover, maar die zijn weer veelste makkelijk.. Ik heb met de practica opgaven ook totaal geen moeite. Pas wanneer ik de theorie lees in het boek, dan gaat het soms enorm fout of blijf ik erbij hangen.quote:Op dinsdag 30 september 2014 17:34 schreef Janneke141 het volgende:
[..]
Je hebt eerder de tip gekregen om niet zomaar scans/foto's met rode strepen te plaatsen, maar om nauwkeuriger aan te geven wat je niet begrijpt.
Wat begrijp je niet, de vraagstelling of de uitwerking? Welke stappen heb je al gezet? Hoe zou je het probleem zelf aanpakken en waar is dat anders dan de antwoorden in het boek?
Dan wordt het voor de mensen hier wat eenvoudiger om een functioneel en enigszins beknopt antwoord te geven.
Even een vraagje tussendoor, krijg je colleges en/of werkcolleges over deze stof?
Dit brengt mij dus in de verwarring metquote:Op dinsdag 30 september 2014 18:52 schreef Riparius het volgende:
[..]
Je probeert nu een heleboel zaken op één hoop te gooien. Een post als deze laat mij zien dat er in jouw hoofd nog steeds grote verwarring heerst over heel basale zaken, en dat je daarom teksten zoals in je foto's niet begrijpt.
Je hebt de productregel en de somregel voor het differentiëren van een functie die wordt gevormd door resp. het product of de som te nemen van twee functies, en je hebt de kettingregel die wordt gebruikt voor het differentiëren van een samenstelling van twee functies die wordt gemaakt door de output van de eerste functie te gebruiken als input voor de tweede functie. En ja, de afgeleide van een samengestelde functie blijkt een product te zijn van twee differentiaalquotiënten, maar dit betekent niet dat je dit maar op één hoop mag gooien met de regel voor differentiëren van een product.
Hiernaast heb je te maken met twee verschillende notaties, de notatie van Leibniz en de notatie van Lagrange. Kort gezegd komt het erop neer dat Leibniz letters gebruikt voor namen van variabelen en dat Lagrange letters gebruikt voor namen van functies.
Leibniz werkt met differentialen en noteert een afgeleide als een zogeheten differentiaalquotiënt (dat eigenlijk geen quotiënt is maar een limiet van een differentiequotiënt). Hebben we een variabele y die afhangt van een variabele x, dan geeft dy/dx de rate of change aan van y ten opzichte van x oftewel de afgeleide van de variabele y naar de variabele x.
Lagrange werkt met namen van functies (die in hun eenvoudigste vorm afhankelijkheidsrelaties tussen twee variabelen beschrijven) en noteert een afgeleide functie door de naam van de oorspronkelijke functie te voorzien van een prime, dus f' geeft dan de afgeleide functie aan van een functie f.
Vaak wordt een functie gegeven in de vorm van een functievoorschrift, bijvoorbeeld f(x) = x˛, en dit is uiteraard de bekende haakjesnotaties f(x) die niet alleen laat zien dat f hier de naam is van de functie maar ook dat x hier de naam is van de onafhankelijke variabele van de functie. De functiewaarde f(x) is dan de afhankelijke variabele, en als we deze afhankelijke variabele aangeven met de letter y dan hebben we dus y = f(x). Voor de afgeleide functie f' van de functie f kunnen we ook een functievoorschrift opschrijven, en in dit eenvoudige voorbeeld is dit f'(x) = 2x. Aangezien we de afhankelijke variabele oftewel de functiewaarde f(x) hier met de letter y hebben aangegeven, kunnen we de afgeleide in de notatie van Leibniz nu ook schrijven als dy/dx, zodat we hier dus hebben dy/dx = f'(x). En omdat y = f(x) kunnen we dit ook schrijven als d(f(x))/dx = f'(x).
Vooral in toegepaste wiskunde, zoals bij de economie, worden de notaties van Leibniz en Lagrange vaak met elkaar gecombineerd of door elkaar gebruikt, en dat gebeurt niet altijd even consequent.
Nee je denkt te makkelijk.quote:Op dinsdag 30 september 2014 19:41 schreef Brainstorm245 het volgende:
[..]
Dit brengt mij dus in de verwarring met
dY/dI = F'(Y) * dY/dI + 1 van y = F(Y) + I
Dan zou ik ook zo denken dY/dI = F'(Y) + 1
Misschien dat ik te moeilijk denk. Owja ik heb al je posts m.b.t. onderwerp goed gelezen vanochtend en ben er in de middag veel over gaan lezen, maar ik probeer de logica te vinden en alles diepzinnig uit te kristalliseren.
Ik blijf het maar raar vinden dat 'afleiden naar I?' wat betekent dat nou precies voor zowel Y als I als je zegt Y afleiden naar I? Dat I dan niet de constante is en I moet benaderen als je doet bij f(x) = 2x dat het dan 2 wordt... en de rest van de getallen/letters een constante is?quote:Op dinsdag 30 september 2014 19:50 schreef t4rt4rus het volgende:
[..]
Nee je denkt te makkelijk.
Het gaat er bij jouw voorbeeld om het afleiden naar I.
f(Y(I)) afleiden naar I geeft geen f '(Y(I)) maar f '(Y(I)) Y '(I) <--- kettingregel.
Laten we die eens als f(x) = (2x + 5)2 schrijven. Dan isquote:Op dinsdag 30 september 2014 19:54 schreef Brainstorm245 het volgende:
[..]
Ik blijf het maar raar vinden dat 'afleiden naar I?' wat betekent dat nou precies voor zowel Y als I als je zegt Y afleiden naar I? Dat I dan niet de constante is en I moet benaderen als je doet bij f(x) = 2x dat het dan 2 wordt... en de rest van de getallen/letters een constante is?
Ik blijf het maar raar vinden dat
f(x) (in het geval met f(x) = 2 ) als afgeleide alleen heeft f'(x) en F(Y) als afgeleide F'(Y) * Y'
Hoe weet je uberhaupt wat de functie van F(Y) is.. Misschien is het wel 2y en wordt het dus gewoon y..
Want door F'(Y) * Y'
Zou je kunnen stellen (althans ik dan) dat F(Y) een functie is zoals; F(Y) = (2y + 5)˛ waardoor je dus die
F'(Y) * Y' hebt..
Ik weet dat dit behoorlijk dom kan klinken voor mensen, maar ik zit niet op dezelfde lijn als de mensen die het wel snappen.
Maar misschien is die F(Y) wel gewoon 2y.. Dus waarom moet je ervan uitgaan dat het niet F'(Y) is maar F'(Y) * dY/dI ?quote:Op dinsdag 30 september 2014 20:02 schreef netchip het volgende:
[..]
Laten we die eens als f(x) = (2x + 5)2 schrijven. Dan is
f(x) = u2
u = 2x + 5
du/dx = 2.
d(f(x))/du = 2u
d(f(x))/dx = d(f(x))/du * du/dx => d(f(x))/dx = (2(2x + 5)) * 2 = 2(4x + 10) = 8x + 20
Waar d(f(x))/dx = f'(x)
Edit: jij hebt als input variable Y, ik heb daarvoor x genomen. Principe blijft hetzelfde.
Wat is dY/dI in Leibniz notatie bij Y= F(Y) + I en dus Y afleiden naar I.quote:Op dinsdag 30 september 2014 20:04 schreef Brainstorm245 het volgende:
[..]
Maar misschien is die F(Y) wel gewoon 2y.. Dus waarom moet je ervan uitgaan dat het niet F'(Y) is maar F'(Y) * dY/dI ?
De F geeft de naam van de functie aan, de Y geeft de naam van de variabele aan, waar F vanaf hangt.quote:Op dinsdag 30 september 2014 20:04 schreef Brainstorm245 het volgende:
[..]
Maar misschien is die F(Y) wel gewoon 2y.. Dus waarom moet je ervan uitgaan dat het niet F'(Y) is maar F'(Y) * dY/dI ?
In mijn boek staat het volgende:quote:Op dinsdag 30 september 2014 20:06 schreef netchip het volgende:
[..]
De F geeft de naam van de functie aan, de Y geeft de naam van de variabele aan, waar F vanaf hangt.
Wat bedoel je met dat laatste stuk? Welke regel probeer je toe te passen?
Oh, dat weet ik niet. Ik zou denken dat dY/dl = 0, maar Janneke/Tartarus/Riparius kan je vast uitleggen waarom het F'(Y) * dY/dl + 1 is. Wel vreemd dat in de afgeleide van een functie diezelfde afgeleide nog een keer voorkomt, maar again: een ander kan je hier meer over vertellen.quote:Op dinsdag 30 september 2014 20:10 schreef Brainstorm245 het volgende:
[..]
In mijn boek staat het volgende:
Y = F(Y) + I
bereken dY/dI
dat is dus volgens het boek:
dY/dI = F'(Y) * dY/dI + 1
Dat vraag ik mij dus ook af!quote:Op dinsdag 30 september 2014 20:12 schreef netchip het volgende:
[..]
Oh, dat weet ik niet. Ik zou denken dat dY/dl = 0, maar Janneke/Tartarus/Riparius kan je vast uitleggen waarom het F'(Y) * dY/dl + 1 is. Wel vreemd dat in de afgeleide van een functie diezelfde afgeleide nog een keer voorkomt, maar again: een ander kan je hier meer over vertellen.
quote:Op dinsdag 30 september 2014 20:10 schreef Brainstorm245 het volgende:
[..]
In mijn boek staat het volgende:
Y = F(Y) + I
bereken dY/dI
dat is dus volgens het boek:
dY/dI = F'(Y) * dY/dI + 1
Zeer in het kort gezegd: Y is geen variabele, maar afhankelijk van I. Dus meer volledig zou er staan:quote:Op dinsdag 30 september 2014 20:12 schreef netchip het volgende:
[..]
Oh, dat weet ik niet. Ik zou denken dat dY/dl = 0, maar Janneke/Tartarus/Riparius kan je vast uitleggen waarom het F'(Y) * dY/dl + 1 is. Wel vreemd dat in de afgeleide van een functie diezelfde afgeleide nog een keer voorkomt, maar again: een ander kan je hier meer over vertellen.
Huh, voor het functievoorschrift van Y(l) heb je Y(l) zelf nodig? Stel dat je voor l = 5 neemt, dan krijg je dus Y(5) = F(Y(5)) + 5. Maar dan weet je toch nogsteeds niet wat Y(5) is?quote:Op dinsdag 30 september 2014 20:16 schreef Janneke141 het volgende:
[..]
[..]
Zeer in het kort gezegd: Y is geen variabele, maar een functie van I. Dus meer volledig zou er staan:
Y(I) = F(Y(I)) + I
bereken dY/dI
dat is dus volgens het boek:
dY/dI = F'(Y(I) * dY/dI + 1
Of, mocht je dit fijner vinden:
Y'(I) = F'(Y(I)) * Y'(I) +1
Ja, en dat heb ik je hier al uitgelegd. Waarom ben je dit een dag later alweer vergeten?quote:Op dinsdag 30 september 2014 20:06 schreef Brainstorm245 het volgende:
[..]
Wat is dY/dI in Leibniz notatie bij Y= F(Y) + I en dus Y afleiden naar I.
Is dat dan
dY / dI = dF(Y)/dY * dY / dI + dI / dI ?
Met dit soort posts maak je hem alleen nog maar meer in de war.quote:Op dinsdag 30 september 2014 20:19 schreef netchip het volgende:
[..]
Huh, voor het functievoorschrift van Y(l) heb je Y(l) zelf nodig? Stel dat je voor l = 5 neemt, dan krijg je dus Y(5) = F(Y(5)) + 5. Maar dan weet je toch nogsteeds niet wat Y(5) is?
Die rare notaties brengen mij in de war, dus daarom dat ik mij afvroeg hoe dit zat. Dank je voor je uitleg (SES / [Bčta wiskunde] Huiswerk- en vragentopic.)!quote:Op dinsdag 30 september 2014 20:45 schreef Riparius het volgende:
[..]
Met dit soort posts maak je hem alleen nog maar meer in de war.
Ik dacht dus in eerste instantie net als Netchip. Ja ik was het niet vergeten, maar in de war geraakt.quote:Op dinsdag 30 september 2014 20:45 schreef Riparius het volgende:
[..]
Met dit soort posts maak je hem alleen nog maar meer in de war.
Die rechte haken in het onderste functievoorschrift betekenen dat je de uitkomst van ½x naar beneden moet afronden op een geheel getal.quote:Op dinsdag 30 september 2014 21:02 schreef RustCohle het volgende:
[ afbeelding ]
Waarom heeft die onderste zo'n rare grafiek en is het discontinu? Op WolframAlpha lijkt het gewoon een continue functie..
[ afbeelding ]
Op Wolfram voerde ik [1/2]x + 1 in.quote:Op dinsdag 30 september 2014 21:09 schreef Janneke141 het volgende:
[..]
Die rechte haken in het onderste functievoorschrift betekenen dat je de uitkomst van ½x naar beneden moet afronden op een geheel getal.
Dat betekent dat f(0) = └0┘+1 = 1, f(1) = └½┘+1 = 0+1=1, f(1,99)=└0,9998┘+1=1 en f(2)=└1┘+1 = 2. Die is in de buurt van ieder even getal dus niet continu, hij maakt een sprongetje. Dat Wolfram iets anders zegt, komt denk ik omdat je de functie niet goed aan het programma hebt weten duidelijk te maken.
Ja, maar daarbij moet je wel bedenken dat Y afhangt van I.quote:Op dinsdag 30 september 2014 20:10 schreef Brainstorm245 het volgende:
[..]
In mijn boek staat het volgende:
Y = F(Y) + I
bereken dY/dI
dat is dus volgens het boek:
dY/dI = F'(Y) * dY/dI + 1
Nee jongeman, je hebt hier de zogeheten floor function, en dat is iets heel anders.quote:Op dinsdag 30 september 2014 21:10 schreef RustCohle het volgende:
[..]
Op Wolfram voerde ik [1/2]x + 1 in.
Zou je kunnen beargumenteren dat de functie die jij gelinkt hebt, niet continu is op, bijvoorbeeld, x = 2, omdat het limiet naar x -> 2, van de positieve zijde, verschilt van het limiet naar x -> 2 vanaf de negatieve zijde? Is dit een correcte beargumentatie?quote:Op dinsdag 30 september 2014 21:22 schreef Riparius het volgende:
[..]
Nee jongeman, je hebt hier de zogeheten floor function, en dat is iets heel anders.
Inderdaad. Als de linker limiet en de rechter limiet van f(x) voor x ↑ a resp. x ↓ a beide bestaan maar ze zijn niet aan elkaar gelijk, dan bestaat de limiet van f(x) voor x → a niet. Dit volgt direct uit de (ε, δ) definitie van limx→a f(x) = L. Een functie f is continu in een punt x = a dan en slechts dan als limx→a f(x) = f(a).quote:Op dinsdag 30 september 2014 21:29 schreef netchip het volgende:
[..]
Zou je kunnen beargumenteren dat de functie die jij gelinkt hebt, niet continu is op, bijvoorbeeld, x = 2, omdat het de limiet voor x -> 2, van de positieve zijde, verschilt van het de limiet voor x -> 2 vanaf de negatieve zijde? Is dit een correcte beargumentatie?
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |