∞ staat voor oneindig. Dus het tweede interval loopt oneindig lang door.quote:Op dinsdag 29 april 2014 20:34 schreef RustCohle het volgende:
[..]
En die teken in het tweede interval?
Dan vraag ik me toch af hoe de ongelijkheid moet worden opgelost.quote:Op dinsdag 29 april 2014 20:37 schreef Ensemble het volgende:
[..]
∞ staat voor oneindig. Dus het tweede interval loopt oneindig lang door.
Mag ik vragen hoe het wordt opgelost?quote:Op dinsdag 29 april 2014 20:42 schreef Anoonumos het volgende:
[ 1.5 , ∞ ) zijn alle getallen groter dan of gelijk aan 1.5
Inderdaad is f(x) groter dan g(x) voor alle x groter of gelijk aan 1.5.
Je hebt bij je tweede opgave niet eens een vraagstelling geformuleerd, en dan kan er ook geen sprake zijn van een antwoord. Als je hier een zinnig antwoord wil krijgen moet je wel beginnen met de vragen uit je boek correct over te nemen. Overigens moet je wél altijd weten (resp. achterhalen) hoe ze aan een antwoord of resultaat komen, daarom heet het ook wiskunde, i.e. de kunde om je ergens van te vergewissen (aldus Simon Stevin, die het woord wiskunde heeft bedacht).quote:Op dinsdag 29 april 2014 20:27 schreef RustCohle het volgende:
[ afbeelding ]
[ afbeelding ]
Ik hoef niet te weten hoe ze eraan komen, maar graag de vertaling van het antwoord?
Oeps vergeten excuus.quote:Op dinsdag 29 april 2014 20:51 schreef Riparius het volgende:
[..]
Je hebt bij je tweede opgave niet eens een vraagstelling geformuleerd, en dan kan er ook geen sprake zijn van een antwoord. Als je hier een zinnig antwoord wil krijgen moet je wel beginnen met de vragen uit je boek correct over te nemen. Overigens moet je wél altijd weten (resp. achterhalen) hoe ze aan een antwoord of resultaat komen, daarom heet het ook wiskunde, i.e. de kunde om je ergens van te vergewissen (aldus Simon Stevin, die het woord wiskunde heeft bedacht).
cool Riparius, dat van Simon Stevin wist ik niet. weer wat geleerd!quote:Op dinsdag 29 april 2014 20:51 schreef Riparius het volgende:
[..]
Je hebt bij je tweede opgave niet eens een vraagstelling geformuleerd, en dan kan er ook geen sprake zijn van een antwoord. Als je hier een zinnig antwoord wil krijgen moet je wel beginnen met de vragen uit je boek correct over te nemen. Overigens moet je wél altijd weten (resp. achterhalen) hoe ze aan een antwoord of resultaat komen, daarom heet het ook wiskunde, i.e. de kunde om je ergens van te vergewissen (aldus Simon Stevin, die het woord wiskunde heeft bedacht).
Ah zo. Nu hebben we een duidelijke vraagstelling. Wat je hier kunt doen is je ongelijkheid herschrijven alsquote:Op dinsdag 29 april 2014 20:53 schreef RustCohle het volgende:
[..]
Oeps vergeten excuus.
[ afbeelding ]
*Bepaal alle waarden van x waarvoor geldt f(x) > g(x)
[ afbeelding ]
Stevin is wel een grappig persoon. Hij vond dat Nederlands de beste taal was voor de wetenschap en heeft vrij veel woorden in het Nederlands geïntroduceerd.quote:Op dinsdag 29 april 2014 20:57 schreef komrad het volgende:
[..]
cool Riparius, dat van Simon Stevin wist ik niet. weer wat geleerd!
Het vetgedrukte heb ik niet begrepen..quote:Op dinsdag 29 april 2014 21:01 schreef Riparius het volgende:
[..]
Ah zo. Nu hebben we een duidelijke vraagstelling. Wat je hier kunt doen is je ongelijkheid herschrijven als
f(x) − g(x) > 0
Nu kun je in het linkerlid van deze ongelijkheid de gegeven uitdrukkingen voor f(x) en g(x) invullen en het linkerlid dan herleiden tot één breuk. Dan kun je vervolgens gebruik maken van het feit dat een breuk een positieve waarde heeft als de teller en noemer hetzij beide positief zijn hetzij beide negatief. Dan krijg je andere ongelijkheden die veel beter te hanteren zijn en die je gemakkelijk zou moeten kunnen oplossen. Nu zelf maar even de opgave op papier uitwerken.
Wel, als je twee getallen a en b hebt, en het is gegeven datquote:Op dinsdag 29 april 2014 21:04 schreef RustCohle het volgende:
[..]
Het vetgedrukte heb ik niet begrepen..
Ohwww dat wist ik niet.quote:Op dinsdag 29 april 2014 21:16 schreef Riparius het volgende:
[..]
Wel, als je twee getallen a en b hebt, en het is gegeven dat
a > b
dan is ook
a − b > 0
En het omgekeerde geldt ook: als je twee getallen a en b hebt waarvan is gegeven dat a − b > 0 dan is ook a > b. Dus zijn de uitspraken a > b en a − b > 0 equivalent.
Verder is in de opgave gegeven dat f(x) = (x + ½)/2 en g(x) = 2/(x + ½)
Dus, als moet gelden
f(x) − g(x) > 0
dan is dit equivalent met
(x + ½)/2 − 2/(x + ½) > 0
Nu kun je de breuken in het linkerlid gelijknamig maken en het verschil van de twee breuken dan herschrijven als één breuk.
Probeer het maar gewoon uit. Neem bijvoorbeeld a = 5 en b = 3, dan is a > b want 5 > 3. Het verschil 5 − 3 = 2 is nu positief. Of vergelijk het met je saldo. Als er 500 euro op je rekening staat dan kun je maximaal ¤ 499,99 eraf halen (aftrekken) als je nog een positief saldo over wil houden.quote:
Ik heb deze methode bekeken, vrij simpel:quote:Op dinsdag 29 april 2014 21:28 schreef Riparius het volgende:
[..]
Probeer het maar gewoon uit. Neem bijvoorbeeld a = 5 en b = 3, dan is a > b want 5 > 3. Het verschil 5 − 3 = 2 is nu positief. Of vergelijk het met je saldo. Als er 500 euro op je rekening staat dan kun je maximaal ¤ 499,99 eraf halen (aftrekken) als je nog een positief saldo over wil houden.
Heb het al.. Gewoon trial and error.quote:Op dinsdag 29 april 2014 21:32 schreef RustCohle het volgende:
[..]
Ik heb deze methode bekeken, vrij simpel:
Echter lijkt het mij kut om elke keer een grafiek te schetsen... Kost wel tijd, aangezien ik het niet direct uit mijn hoofd weet en dus dan nog een tabel etc erbij moet maken...wat tijd kost.
Is er een snellere methode?
Je hoeft niet per se een grafiek te schetsen, je kunt ook een tekenschema maken. Bij de opgave hierboven krijg je na de herleiding van het linkerlid ook te maken met kwadratische ongelijkheden. Alleen moet je hier bedenken dat zowel teller als noemer van de breuk in het linkerlid dan hetzij beide positief hetzij beide negatief moeten zijn om aan het gevraagde te voldoen. In dit geval maak je twee tekenschema's die je (uitgelijnd) onder elkaar zet. Dan kun je gemakkelijk aflezen voor welke waarden van x aan de ongelijkheid wordt voldaan.quote:Op dinsdag 29 april 2014 21:32 schreef RustCohle het volgende:
[..]
Ik heb deze methode bekeken, vrij simpel:
Echter lijkt het mij kut om elke keer een grafiek te schetsen... Kost wel tijd, aangezien ik het niet direct uit mijn hoofd weet en dus dan nog een tabel etc erbij moet maken...wat tijd kost.
Is er een snellere methode?
Aha oke thanks.quote:Op dinsdag 29 april 2014 21:40 schreef Riparius het volgende:
[..]
Je hoeft niet per se een grafiek te schetsen, je kunt ook een tekenschema maken. Bij de opgave hierboven krijg je na de herleiding van het linkerlid ook te maken met kwadratische ongelijkheden. Alleen moet je hier bedenken dat zowel teller als noemer van de breuk in het linkerlid dan hetzij beide positief hetzij beide negatief moeten zijn om aan het gevraagde te voldoen. In dit geval maak je twee tekenschema's die je (uitgelijnd) onder elkaar zet. Dan kun je gemakkelijk aflezen voor welke waarden van x aan de ongelijkheid wordt voldaan.
Die gast van dat filmpje is mijn oude natuurkundeleraar!quote:Op dinsdag 29 april 2014 21:32 schreef RustCohle het volgende:
[..]
Ik heb deze methode bekeken, vrij simpel:
Echter lijkt het mij kut om elke keer een grafiek te schetsen... Kost wel tijd, aangezien ik het niet direct uit mijn hoofd weet en dus dan nog een tabel etc erbij moet maken...wat tijd kost.
Is er een snellere methode?
Ik neem aan dat je de opgave nu verder zelfstandig kunt oplossen? Veel (beginnende) studenten hebben moeite met het rekenen met breuken, omdat dat dat op de lagere school niet meer fatsoenlijk wordt onderwezen, en dat wreekt zich dan in het voortgezet onderwijs onverbiddelijk bij eenvoudige algebraïsche herleidingen.quote:
Laten we zeggen dat we twee punten A(a1;a2) en B(b1;b2) hebben en dat gevraagd wordt naar de cartesische vergelijking van de rechte lijn door deze punten A en B.quote:Hier een leuke:
bepaal van de volgende punten de vergelijking van de lijn:
(3,0) en (0,3)
ik had als antwoord: x + y - 3 = 0, echter is het antwoord x + y = 3.
Ik deed het met de bekende delta y / delta x methode.
Echter gaat het boek van de volgende formule uit (welke voor mij Chinees klinkt):
(a1 - b1) (y - b2) = (a2 - b2) (x - b1)
x = a1 en y = a2 en dat geeft (a1 - b1) (a2 - b2) = (a2 - b2) (a1 - b1)
Na 4 ben ik helemaal de weg kwijtgeraakt. Het staat moeilijker geschreven dan dat ik het kan begrijpen op dit moment. Want ik snap het al helemaal niet.quote:Op dinsdag 29 april 2014 22:54 schreef Riparius het volgende:
[..]
Ik neem aan dat je de opgave nu verder zelfstandig kunt oplossen? Veel (beginnende) studenten hebben moeite met het rekenen met breuken, omdat dat dat op de lagere school niet meer fatsoenlijk wordt onderwezen, en dat wreekt zich dan in het voortgezet onderwijs onverbiddelijk bij eenvoudige algebraïsche herleidingen.
[..]
Laten we zeggen dat we twee punten A(a1;a2) en B(b1;b2) hebben en dat gevraagd wordt naar de cartesische vergelijking van de rechte lijn door deze punten A en B.
Je berekent nu eerst de richtingscoëfficiënt van de lijn door de verschillen van de x- resp. y-coördinaten te bepalen en hiervan het quotiënt te nemen. We hebben nu
(1) Δx = a1 − b1, Δy = a2 − b2
Nu zal ik aannemen dat Δx niet gelijk is aan nul, want als dat wel zo is heb je een verticale lijn (een lijn evenwijdig aan de y-as) en die heeft zoals bekend geen richtingscoëfficiënt. Laten we de richtingscoëfficiënt zoals te doen gebruikelijk m noemen, dan hebben we dus
(2) m = Δy/Δx
en dus
(3) m = (a2 − b2)/(a1 − b1)
Maar veronderstel nu dat we een willekeurig gekozen punt P(x;y) hebben dat op onze lijn door A en B ligt en dat dit punt P niet samenvalt met punt B op de lijn. Dan kunnen we op precies dezelfde manier als bij (3) de richtingscoëfficiënt m ook bepalen door het verschil tussen de y-coördinaten van P en B te delen door het verschil van de x-coördinaten van P en B, en dan krijgen we dus
(4) m = (y − b2)/(x − b1)
Maar nu stellen (3) en (4) dezelfde richtingscoëfficiënt voor van dezelfde lijn, en dus hebben we
(5) (y − b2)/(x − b1) = (a2 − b2)/(a1 − b1)
en beide leden van (5) met (x − b1)(a1 − b1) vermenigvuldigen om de breuken te verdrijven (oftewel 'kruislings vermenigvuldigen') geeft dan inderdaad
(6) (a1 − b1)(y − b2) = (a2 − b2)(x − b1)
Aangezien deze betrekking geldt voor de coördinaten (x;y) van een willekeurig punt op de lijn door A en B hebben we hiermee inderdaad de cartesische vergelijking van de lijn door de punten A(a1;a2) en B(b1;b2) gevonden. Je kunt overigens gemakkelijk nagaan dat (6) ook geldig blijft als a1 = b1, dus als de lijn door A en B wel verticaal is. Dan reduceert het linkerlid van (6) immers tot nul, zodat je als vergelijking krijgt x = b1, aangezien dan geldt a2 ≠ b2 omdat de punten A en B niet samenvallen.
In de praktijk moet je (6) niet gebruiken als je wordt gevraagd de cartesische vergelijking op te stellen van een rechte lijn door twee gegeven punten, de kans op fouten is hierbij veel te groot, zoals je zelf ook al ontdekt zult hebben. Het is veel praktischer om te onthouden dat de vergelijking van een rechte lijn met richtingscoëfficiënt m door een punt P(x0;y0) wordt gegeven door
(7) y − y0 = m(x − x0)
Wordt nu gevraagd de cartesische vergelijking van een rechte lijn door twee gegeven punten op te stellen, dan bereken je eerst m = Δy/Δx en vul je dit in in (7), waarbij je voor x0 en y0 de coördinaten van één der gegeven punten neemt.
Voorbeeld: bepaal de cartesische vergelijking van de rechte lijn door de punten (3;0) en (0;3).
Oplossing: we hebben m = (3−0)/(0−3) = −1. Invullen in (7) met x0 = 3, y0 = 0 geeft
y − 0 = −1(x − 3)
y = 3 − x
x + y = 3
Uiteraard kunnen we desgewenst het rechterlid van deze vergelijking op nul herleiden door van beide leden 3 af te trekken, en dan krijgen we
x + y − 3 = 0
Bij (5) plak je vergelijking (3) en (4) aan elkaar.quote:Op woensdag 30 april 2014 09:58 schreef RustCohle het volgende:
[..]
Na 4 ben ik helemaal de weg kwijtgeraakt. Het staat moeilijker geschreven dan dat ik het kan begrijpen op dit moment. Want ik snap het al helemaal niet.
Ja klopt. Was alleen benieuwd of daar wel naar gekeken wordt bij het nakijken van de intaketoets en niet alles klakkenloos gecontroleerd wordt met wat er op het antwoordenmodel staat.quote:Op woensdag 30 april 2014 11:09 schreef Novermars het volgende:
Ze zijn equivalent, dus het maakt weinig uit. Mijn voorkeur gaat uit naar je eerste methode. Die is naar mijn mening een stuk duidelijker.
SPOILEROm spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.SPOILEROm spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.SPOILEROm spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.SPOILEROm spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.![]()
Inderdaad als y = 0. Als je dan f(0) doet dan stel je dus x = 0, en dat is niet de bedoeling.quote:[b]Op woensdag 30 april 2014 17:02 schreef [url=http://forum.fok.nl/user/profile
*Voor welke reële getallen p heeft de grafiek van f geen snijpunten met de x-as:
f(x) = x² + px + 1 ---> Ik weet dat de snijpunt met de x-as is als y = 0, echter kom ik niet ver als ik dan f(0) invul... Dat schiet niet op met het oplossen van de vraag:.
Je moet 0 = y = f(x) = x^2 + px + 1 oplossen.![]()
Moet dat d.m.v. trial and error?quote:Op woensdag 30 april 2014 17:07 schreef Anoonumos het volgende:
[..]
Inderdaad als y = 0. Als je dan f(0) doet dan stel je dus x = 0, en dat is niet de bedoeling.
Je moet 0 = y = f(x) = x^2 + px + 1 oplossen.![]()
Hoe wil je daar de abc formule op toepassen zonder getallen?quote:Op woensdag 30 april 2014 17:45 schreef thenxero het volgende:
[..]
ABC formule (of eigenlijk de discriminant) lijkt me sneller.![]()
Noem de discriminant D. Als D<0, dan zijn er geen oplossingen (snap je waarom?). Het is dus weer een kwestie van nagaan wat de discriminant is (in termen van p), en dan D<0 oplossen.quote:Op woensdag 30 april 2014 17:47 schreef RustCohle het volgende:
[..]
Hoe wil je daar de abc formule op toepassen zonder getallen?![]()
lol, dit is exact dezelfde vraag die ik een paar maanden geleden heb gesteld. Als je op fok zoekt dan krijg je een uitgebreide uitleg van Riparius.![]()
Moest jij toen ook naar de EUR?quote:Op woensdag 30 april 2014 17:51 schreef wiskundenoob het volgende:
lol, dit is exact dezelfde vraag die ik een paar maanden geleden heb gesteld. Als je op fok zoekt dan krijg je een uitgebreide uitleg van Riparius.![]()
Welke opleiding/studie doe je nu?quote:Op woensdag 30 april 2014 17:57 schreef wiskundenoob het volgende:
[..]
Nee... ik was gewoon wat oefeningen aan het maken.
Forum Opties Forumhop: Hop naar: