Aah jij ook al net in EDU bètaquote:Op woensdag 27 juni 2012 17:38 schreef kutkloon7 het volgende:
Net modellen en simulatie verneukt. Volgend jaar opnieuw doen, want ik ben op vakantie bij de hertentamens.
Ik zat bij het tentamen uren te kloten met een bepaalde opgave, uiteindelijk niet gelukt, probeer ik het thuis nog eens, lukt het allemaal in één keer.
Jaquote:Op woensdag 27 juni 2012 17:58 schreef thenxero het volgende:
[..]
Aah jij ook al net in EDU bèta. Hoe kan je het makkelijkste vak uit de bachelor nou verneuken man?
Iedereen weet dat de frequentie van het lichtnet hier 50 Hz bedraagt, dus je antwoord is niet goed.quote:Op woensdag 27 juni 2012 18:41 schreef superky het volgende:
Hoi,
Graag wil ik een vraag stellen over het volgende:
In Nederland gelden voor de netspanning (stopcontact) de volgende karakteristieken:
Vmax=325 V; T= 20 ms
Bereken de frequentie van de netspanning.
Tja je moet ook wel het dictaat meenemenquote:Op woensdag 27 juni 2012 18:39 schreef kutkloon7 het volgende:
[..]
Ja
Ik had het dictaat niet bij me, en niet geleerd omdat ik nog een practicum moest maken. Die gast met wie ik dat doe mailde me twee dagen voor de deadline dat hij er toch niks van snapt, dus nu doe ik alles
En iedereen heeft het verpest, ik heb met de tentamens van afgelopen jaren geoefend en deze was echt veel lastiger. Er was eigenlijk maar één opgave die ik echt goed heb gedaan, die ging over de simplexmethode. Voor de rest was ik ook veel te zenuwachtig eigenlijk, thuis lukte het al een stuk beter toen ik er nog een keer naar keek.
Tja, maar zonder dictaat had ik denk ik ook geen voldoende gehaald hoorquote:Op woensdag 27 juni 2012 18:54 schreef kutkloon7 het volgende:
Ik voel me hier nu niet bepaald beter door, danku
Het dictaat had ook niet veel geholpen trouwens, ik hoorde iedereen al klagen dat je er helemaal niks aan had.
Dankjewel!quote:Op woensdag 27 juni 2012 15:32 schreef Riparius het volgende:
[..]
Je kunt eens beginnen met de site van Dick Klingens. Hier is heel veel te vinden over vlakke meetkunde, met bewijzen, en alles in het Nederlands (hetgeen van belang is omdat je dan ook vertrouwd raakt met de unieke Nederlandse termen voor veel meetkundige begrippen). Maar let op de waarschuwing (met een knipoog naar Plato): Μηδεὶς ἀγεωμέτρητος εἰσίτω μου τὴν στέγην (laat niemand die onkundig is in de meetkunde mijn site binnengaan).
Deed jij nou staatsexamen?quote:Op woensdag 27 juni 2012 20:22 schreef Amoeba het volgende:
[..]
Dankjewel!
Mijn cijfer voor wiskunde B is bekend, slechts een 8..
Schriftelijk 7,8, mondeling 7,6...
Om nog even terug te komen op die meetkunde opgave die je kreeg voorgeschoteld, dat was een klassieker, gebaseerd op propositie 31 uit het zesde boek van de elementen van Euclides (de examencommissie heeft dus ook niet veel fantasie). Kijk hier maar even.quote:
Beetje creatief zijn. We hebben:quote:Op woensdag 27 juni 2012 21:07 schreef Anoonumos het volgende:
Bepaal de laatste 2 cijfers van 123^456.
Hoe pak je zo'n soort opgave aan?
Niets mis mee, je mag daar best trots op zijn. De meetkundevraagjes zijn soms wat tricky en je moet er ook rekening mee houden dat je genaaid kan worden door de wijze van normeren, het is perfect mogelijk dat je volgens een correcte redenatie tot het juiste antwoord krijgt en dat je toch niet alle punten voor die vraag krijgt omdat de normering per vraag is opgedeeld in allerlei deelstappen, dat werkt nivellerend aangezien de zwakkere leerlingen al snel nog wat puntjes sprokkelen terwijl de goede leerlingen misschien wel stap b en c overslaan (niet expliciet opschrijven) en hierdoor wat punten mislopen. Indien de leraar zijn eigen oordeel zou mogen gebruiken in plaats van het normeringsmodel te gebruiken dan zou de standaarddeviatie waarschijnlijk wat groter zijn.quote:Mijn cijfer voor wiskunde B is bekend, slechts een 8..
Schriftelijk 7,8, mondeling 7,6...
Zou het niet makkelijker zijn om met modulorekenen te doen? Dan heb je niet zoveel inzicht nodig.quote:Op woensdag 27 juni 2012 21:54 schreef Riparius het volgende:
[..]
Beetje creatief zijn. We hebben:
123 = 41∙3
en dus:
123456 = 41456∙3456
Hiermee heb je het probleem herleid tot het bepalen van de laatste twee cijfers van 41456 en van 3456, want als je die beide weet vind je door vermenigvuldiging de laatste twee cijfers van 123456.
Verder heb je
41456 = (40 + 1)456
Zie je wat je hiermee kunt doen?
Voor machten van 3 kun je bedenken dat 320 = 3486784401 zodat het patroon van de laatste twee cijfers zich dan weer gaat herhalen. Dus kan ik meteen zeggen dat de laatste twee cijfers van 3456 hetzelfde zijn als de laatste twee cijfers van 316 = 43046721. Nu mag je zelf weer even verder denken.
Ik denk dat het juist omgekeerd is. Als je modulair kunt rekenen stel je waarschijnlijk niet zo'n vraag.quote:Op woensdag 27 juni 2012 22:53 schreef kutkloon7 het volgende:
[..]
Zou het niet makkelijker zijn om met modulorekenen te doen? Dan heb je niet zoveel inzicht nodig.
Dat is waar ja. Maar zo'n vraagstuk lijkt me een prima reden om het te leren, zo moeilijk is het nietquote:Op woensdag 27 juni 2012 22:57 schreef Riparius het volgende:
[..]
Ik denk dat het juist omgekeerd is. Als je kunt modulusrekenen stel je waarschijnlijk niet zo'n vraag.
Hier staat wel goede uitleg voor dat soort problemen, met wat sommen (die trouwens erg veel op die vraag lijken).quote:Op woensdag 27 juni 2012 21:07 schreef Anoonumos het volgende:
Bepaal de laatste 2 cijfers van 123^456.
Hoe pak je zo'n soort opgave aan?
Ik krijg mijn examen niet meer te zien, maar ik kan het wel vertellen. De stappen van P passeert de evenwichtsstand op t=7,5 enzo, ik vulde direct die t waarde in. De meetkunde opgaven kreeg ik niet af en 2 vragen stuurden me het bos in (deels goed, dat wel).quote:Op woensdag 27 juni 2012 22:30 schreef Bram_van_Loon het volgende:
[..]
Niets mis mee, je mag daar best trots op zijn. De meetkundevraagjes zijn soms wat tricky en je moet er ook rekening mee houden dat je genaaid kan worden door de wijze van normeren, het is perfect mogelijk dat je volgens een correcte redenatie tot het juiste antwoord krijgt en dat je toch niet alle punten voor die vraag krijgt omdat de normering per vraag is opgedeeld in allerlei deelstappen, dat werkt nivellerend aangezien de zwakkere leerlingen al snel nog wat puntjes sprokkelen terwijl de goede leerlingen misschien wel stap b en c overslaan (niet expliciet opschrijven) en hierdoor wat punten mislopen. Indien de leraar zijn eigen oordeel zou mogen gebruiken in plaats van het normeringsmodel te gebruiken dan zou de standaarddeviatie waarschijnlijk wat groter zijn.
Een 8 is voor mondeling bij veel examinatoren zo'n beetje het hoogst haalbare dus dat is ook in orde.
Als je jouw examen nog eens in zou gaan kijken laat je dan weten waar je de puntjes hebt laten liggen?
Dat klopt, alleen moet je dan nog wel wat handige keuzes zien te maken, waarbij een (simpele) calculator nu eindelijk eens wél van pas komt.quote:Op woensdag 27 juni 2012 23:03 schreef kutkloon7 het volgende:
[..]
Dat is waar ja. Maar zo'n vraagstuk lijkt me een prima reden om het te leren, zo moeilijk is het niet
Dat is inderdaad heel elegant, ik had er niet aan gedacht om eerst het getal mod 4 en mod 25 te bepalen. Maar ik doe dit soort dingen zelden.quote:Op donderdag 28 juni 2012 14:16 schreef thabit het volgende:
123 = -1 mod 4 dus 123456 = 1 mod 4.
123 = -2 mod 25 dus 123456 = (-2)456 = 2456 mod 25
Je kan de machten van 2 modulo 25 makkelijk uitrekenen: 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13, 1. Zo vinden we een periode van 20 (met wat meer kennis over modulorekenen is overigens direct in te zien dat 220=1 mod 25 geldt, maar dat terzijde).
Dus 2456 = 216 mod 25 = 11 mod 25 zoals we uit het rijtje kunnen afleiden.
De getallen modulo 100 die 11 mod 25 zijn, zijn 11, 36, 61, 86. Alleen 61 daarvan is 1 mod 4.
Daar zijn toch geen ingewikkelde rekenpartijen voor nodig.
Je tweede afgeleide van θ(t) naar t is fout. En neem t0 = 0, er staat nergens in het vraagstuk dat dat niet mag. Dan heb je alvast c0 = θ0 en c1 = 0.quote:Op donderdag 28 juni 2012 18:29 schreef dynamiet het volgende:
Ik heb de volgende opgave:
[ afbeelding ]
Ik tot zover gekomen:
[ afbeelding ]
Zou iemand mij verder kunnen helpen? Ik kom er niet uit hoe ik de termen c1, c2 en c3 moet bepalen.
Idd, afgeleide is fout, zal ik even aanpassenquote:Op donderdag 28 juni 2012 18:32 schreef Riparius het volgende:
[..]
Je tweede afgeleide van θ(t) naar t is fout. En neem t0 = 0, er staat nergens in het vraagstuk dat dat niet mag. Dan heb je alvast c0 = c1 = 0.
Nee, je moet c2, c3 én tf bepalen. Daarbij moet je ook nog gebruik maken van de gegeven maximale hoeksnelheid en de gegeven maximale hoekversnelling.quote:Op donderdag 28 juni 2012 18:38 schreef dynamiet het volgende:
Ik denk dat ik zo verder moet:
[ afbeelding ]
Nu alleen nog C1 en C2 bepalen..
En dan nog uitdrukken in tf=..
Volgens mij klopt dit niet. Het lijtk mij namelijk dat in de formule voor tf ook θf moet zitten. en de maximale snelheid en maximale hoek versnelling.quote:Op donderdag 28 juni 2012 19:07 schreef Riparius het volgende:
[..]
Nee, je moet c2, c3 én tf bepalen. Daarbij moet je ook nog gebruik maken van de gegeven maximale hoeksnelheid en de gegeven maximale hoekversnelling.
Uit θ'(tf) = 0 volgt alvast dat tf = -(2/3)∙(c2/c3), aangezien tf > t0 = 0.
Waarom zou dit niet kloppen? Ik geef gewoon een betrekking tussen tf, c2 en c3 die volgt uit θ'(tf) = 0.quote:Op donderdag 28 juni 2012 19:10 schreef dynamiet het volgende:
[..]
Volgens mij klopt dit niet. Het lijkt mij namelijk dat in de formule voor tf ook θf moet zitten.
Sorry klopt misschien wel, begrijp alleen niet helemaal hoe je er bij komt.quote:Op donderdag 28 juni 2012 19:15 schreef Riparius het volgende:
[..]
Waarom zou dit niet kloppen? Ik geef gewoon een betrekking tussen tf, c2 en c3 die volgt uit θ'(tf) = 0.
We hebben:quote:Op donderdag 28 juni 2012 19:32 schreef dynamiet het volgende:
[..]
Sorry klopt misschien wel, begrijp alleen niet helemaal hoe je er bij komt.
θ'(tf) = 0 en θ(tf) = θf
Heel erg bedankt, ik zal er morgen ochtend verder meequote:Op donderdag 28 juni 2012 20:07 schreef Riparius het volgende:
[..]
We hebben:
θ'(t) = 2∙c2t + 3∙c3t2 = t(2∙c2 + 3∙c3t)
Nu is ook θ'(t0) = θ'(0) = 0 en tevens θ'(tf) = 0
De grafiek van θ'(t) is een bergparabool die horizontale (tijd)as snijdt in t = 0 en t = -(2/3)∙(c2/c3), en dus is
tf = -(2/3)∙(c2/c3)
De maximale (positieve) versnelling heb je dus op tijdstip t = 0, zodat we ook hebben θ''max = θ''(0) = 2∙c2, zodat
c2 = ½∙θ''max
Nu maar weer even zelf verder gaan.
Waarom morgen pas? Het lastigste heb je nu gehad, denk ik zo. Hint: de maximale snelheid θ'max wordt bereikt op tijdstip t = ½∙tf (de top van de bergparabool als grafiek van θ'(t)) en tf = -(2/3)∙(c2/c3), dus ...quote:Op donderdag 28 juni 2012 20:19 schreef dynamiet het volgende:
[..]
Heel erg bedankt, ik zal er morgen ochtend verder mee
Waarom niet? Ik heb het inmiddels helemaal doorgerekend en ik kom opquote:
Klopt, ik was vergeten dat C3 negatief is. Maar toch blijf ik het vreemd vinden dat de hoek er niet toe doet om de tijd te berekenen.quote:Op donderdag 28 juni 2012 20:58 schreef Riparius het volgende:
[..]
Waarom niet? Ik heb het inmiddels helemaal doorgerekend en ik kom op
c2 = ½∙θ''max
c3 = -(1/12)∙(θ''max)2/θ'max
En substitutie in tf = -(2/3)∙(c2/c3) geeft dan:
tf = 4∙(θ'max/θ''max)
Waarom vind je dat vreemd? θf - θ0 is de integraal van θ'(t) over het interval [0, tf]. De bergparabool die de grafiek is van θ'(t) ligt volledig vast door de hoogte θ'max van de top en de steilheid θ''max van de raaklijn aan de curve in de oorsprong, zodat het ook zonder rekenwerk meteen duidelijk is dat tf volledig is bepaald door θ'max en θ''max. Hiermee ligt ook de oppervlakte onder de curve van θ'(t) oftewel θf - θ0 volledig vast voor een gegeven θ'max en θ''max. Dat coëfficiënt c3 negatief is zou je niet moeten verbazen, de hoekversnelling θ''(t) moet immers lineair afnemen met de tijd, van θ''max voor t = t0 = 0 tot -θ''max voor t = tf.quote:Op donderdag 28 juni 2012 20:59 schreef dynamiet het volgende:
[..]
Klopt, ik was vergeten dat C3 negatief is. Maar toch blijf ik het vreemd vinden dat de hoek er niet toe doet om de tijd te berekenen.
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |