Dit klinkt interessant, maar kan je je conclusie toelichten?quote:Op zondag 21 maart 2010 15:40 schreef Refragmental het volgende:
Dit gaat er inderdaad voor zorgen dat de rekenkracht van de CPU de komende jaren nog ongestoord kan verdubbelen ieder jaar.
Mooi dat we nu eindelijk een 3e dimensie kunnen gaan gebruiken bij het maken van CPU's.
Hoop dat dit vrij vlot geïmplementeerd gaat worden in consumenten producten, de impact zal enorm zijn!
http://www.youtube.com/us(...)638C02/3/Z5UTRTOfgo4quote:Op zondag 21 maart 2010 18:44 schreef Onverlaatje het volgende:
[..]
Dit klinkt interessant, maar kan je je conclusie toelichten?
Hoe zorgt de memristor ervoor dat wij nu een 3e dimensie kunnen gaan gebruiken bij het maken van CPU's ?
Het hier aangehaalde voorbeeld gaat over een mogelijke vervanger van flashram. Memristors kunnen niet miljarden xen per seconde herschreven worden zoals in een CPU gebruikelijk is. In minder dan 1 seconde zou hij al defect raken. Directe toepassingen in een CPU zie ik als beperkt tot configuratie switsches welke slechts zelden veranderd worden. Een mogelijke toepassing zouden herprogrammeerbare logic gates kunnen zijn binnen een deel van de CPU. Een soort van FPGA in een CPU. Deze mogelijkheden worden al onderzocht en kunnen tot een sneller en efficienter CPU leiden. Nadeel is dat er een extra interpreter of precompiler nodig zal zijn binnen het Operating System. De instructie CPUID is niet meer afdoende om de software te verduidelijken welke configuraties/instructies ondersteunt worden omdat die telkens kunnen wijzigen. Dan nog is er maar ruimte voor een beperkt aantal herconfiguraties in het geval van een memristorFPGA binnen de levensduur van zo'n CPU.quote:Op zondag 21 maart 2010 19:45 schreef Refragmental het volgende:
http://www.youtube.com/us(...)638C02/3/Z5UTRTOfgo4
In deze lezing uit de OP wordt uitgelegd hoe ze de memristor bovenop de huidige transistor kunnen plaatsen, en niet 1,2 of 3 lagen maar mogelijk duizend lagen.
Memristors zijn bijna ideaal voor neurale netwerken en wat het helemaal tof maakt is dat Titaanoxide memristors zelfs biocompatibel zijn. Titaanoxide wordt niet afgestoten, een interface mogelijkheid met biologische neuronen is mogelijk. Neurale netwerken zijn goed in patroonherkenning dus in dergelijke toepassingen zijn ze te vinden. Voor klassieke computers is dat juist zeer lastig gebleken.quote:Op maandag 22 maart 2010 13:41 schreef Onverlaatje het volgende:
Maar als ik het goed begrijp kan er nu wel een specifiek neuraal netwerk CPU gemaakt worden.
Wat zouden de toepassingen van dergelijke CPU's zijn in het dagelijks leven?
Verbeterde database searches? Een just in time compiler, gebakken in de CPU zelf?
Daar zullen gehandicapten en blinden bijzonder blij mee zijn.quote:Titaanoxide wordt niet afgestoten, een interface mogelijkheid met biologische neuronen is mogelijk. Neurale netwerken zijn goed in patroonherkenning dus in dergelijke toepassingen zijn ze te vinden.
Dan zou er een compiler configuration interface geschreven dienen te worden, zodat een CPU kan vertellen wat de logica achter de instructies is.quote:Een programma dient geinterpreteerd te worden naar een specifieke CPU/GPU/IOchipset configuratie. Omdat dat nu nog niet gebeurt is de performance eigenlijk abominabel te noemen tov de hardware mogelijkheden
Probleem is dat progs gecompileerd aangeleverd worden en om het op verschillende computer confs aan de praat te krijgen zijn diverse libraries zoals DLL's nodig en links naar drivers van GPU's, IOchipset etc.quote:Op maandag 22 maart 2010 18:00 schreef Onverlaatje het volgende:
Dan zou er een compiler configuration interface geschreven dienen te worden, zodat een CPU kan vertellen wat de logica achter de instructies is.
De oplossing is dan dat een bytecode compiler generieke (tussen verschillende processoren) code voor te laten compileren naar generieke machinecode en tussen deze code blokken bytecode aan te geven welke hercompileert dienen te worden naar CPU specifieke instructiesets. Zo kan je bedrijfsgevoelige code verdelen tussen blokken processorgenerieke code en te optimaliseren bytecode en zo dus 'obfuscaten' terwijl je wel geoptimaliseerde code laat uitvoeren.quote:Op maandag 22 maart 2010 19:52 schreef Digi2 het volgende:
[..]
Probleem is dat progs gecompileerd aangeleverd worden en om het op verschillende computer confs aan de praat te krijgen zijn diverse libraries zoals DLL's nodig en links naar drivers van GPU's, IOchipset etc.
Dat is verre van optimaal, er ontstaan diverse interface tussenlagen die ook nog een bugs kunnen bevatten.
De juiste weg is. De installer checked de hardware en optimaliseert en compileert ter plaatse de executable naar de eigen conf. Drivers zijn dan niet meer nodig. Er zijn een aantal redenen waarom dit niet gebeurt.
Hardwarefabrikanten willen niet teveel in eigen keuken laten kijken. Vandaar vaak proprietary drivers. ATI/AMD en Intel geven vaak wel inzicht in de sourcecodes aan een selecte groep OS schrijvers zoals LINUX, ATI AMD doet dat pas sinds kort. Men geeft niet graag broncodes uit handen omdat die veel intellectuele ideeen/eigendommen bevatten. De prijs hiervoor is lompe inefficiente progs die ook nog eens buggie zijn. Bovendien zou je een herinstall moeten doen indien je bijv je grafische kaart/GPU vervangt. Dit kan je ondervangen door de compiler/optimiser in je OS te integreren. Die kan dan bij een confchange automatisch opnieuw compileren.
Toch kiezen hardware fabrikanten zoals van GPU's voor zover mij bekend nog niet voor deze weg. De combinatie van bytecode en JIT is zeker een optie die indien op grotere schaal toegepast tot hogere efficientie leidt.quote:Op maandag 22 maart 2010 21:46 schreef Onverlaatje het volgende:
De oplossing is dan dat een bytecode compiler generieke (tussen verschillende processoren) code voor te laten compileren naar generieke machinecode en tussen deze code blokken bytecode aan te geven welke hercompileert dienen te worden naar CPU specifieke instructiesets. Zo kan je bedrijfsgevoelige code verdelen tussen blokken processorgenerieke code en te optimaliseren bytecode en zo dus 'obfuscaten' terwijl je wel geoptimaliseerde code laat uitvoeren.
Ik heb sterk het idee dat je hier de transistor sterk tekort mee doetquote:Op zaterdag 20 maart 2010 12:07 schreef Digi2 het volgende:
We hadden de spoel(inductie), condensator(capaciteit) en de weerstand,na 150 jaar is daar nu de memristor als 4e element bijgekomen.
Tja, de transistor wordt door wetenschappers net als de diode niet beschouwd als een fundamenteel element,quote:Op maandag 22 maart 2010 22:38 schreef YuckFou het volgende:
Ik heb sterk het idee dat je hier de transistor sterk tekort mee doet
quote:Siliciumgeheugen maakt kleiner productieprocedé eenvoudig
Door Willem de Moor, woensdag 1 september 2010 14:13, views: 1.597
De volgende stap naar nog kleinere productieprocedés zou dankzij siliciumgeheugen vrij eenvoudig zijn. Onderzoekers hebben eenvoudige geheugencellen ontwikkeld, die slechts bestaan uit silicium en aansluitingen.
Het nieuwe type geheugen werd ontwikkeld na observaties van dunne stroken grafiet, van ongeveer tien nanomoeter breed. Onder invloed van een stroompuls kon de strook worden gebroken en weer verbonden, wat het equivalent van een geheugenbit vormde. Nader onderzoek wees echter uit dat dit effect niet afhankelijk is van grafiet; ook silicium vertoont dit fenomeen. Aangezien silicium het hoofdbestanddeel van vrijwel alle processors is en goed in halfgeleiderproducten kan worden verwerkt, zou het siliciumgeheugen snel in productieprocessen kunnen worden geïntegreerd.
Het siliciumgeheugen werkt door een laagje siliciumoxide, een elektrische isolator, tussen twee lagen geleidend polykristallijn silicium te klemmen. Bij het aanbrengen van een stroom worden oxide-atomen van het silicium gestript, wat zorgt voor de vorming van geleidende siliciumkristallen. Eenmaal gevormd kunnen deze kristalsporen, net als het grafiet eerder, steeds opnieuw worden verbonden en verbroken. De lagen 'poly' dienen hierbij als elektrodes. Flashgeheugen is complexer en heeft drie elektrodes nodig.
De zo gevormde geheugenbits kunnen bijzonder eenvoudig worden geproduceerd en gezien hun samenstelling laten zij zich eenvoudig in bijvoorbeeld processors verwerken. Bovendien zijn de structuren zeer klein. De kristaldraden zijn tussen de vijf en tien nanometer groot, veel kleiner dan de featuresize waaraan de huidige geheugenproductietechnieken met hun 20 tot 30nm toe zijn. De siliciumoxide-geheugenbits zijn tevens in driedimensionale structuren te stapelen en schakelen in minder dan 100ns. De onderzoekers van de Rice-universiteit werken samen met verschillende bedrijven en hebben al een werkende prototype-geheugenchip met duizend elementen. Deze wordt nu getest.
HP moves to revolutionize computingquote:HP moves to revolutionize computing
HP has worked up quite a reputation for being the king of drama over the last several years. However, this week the company shifted the drama where it belongs: with the products.
Yes, HP announced an ARM based server platform targeted at Cloud applications that promises to significantly reduce server costs for companies like Amazon, Google, Facebook and other entities who live off of the web.
Genre classics resurrected as graphic novelsYet, this is just the beginning of a much bigger revolution.
In a session after the announcement, HP Labs talked about the new as the first step to replace processor architectures, networking, and storage as we know it with a fabric based on their unique Memristor technology which is apparently close to initial test fabrication.
This would suggest HP is actually on the cusp of a revolution similar to the transistor. If properly executed, the new paradigm could put the company at the heart of an intense technology storm.
The Problem with Current Architectures
Remember, whether we are talking PCs or servers, the base architecture goes back decades to before there was a web or high speed networks. Repositories were, back in the days of yore, measured in megabytes. Now they are gauged in terabytes, with bottlenecks moving from slow processors, to slow memory, latency and crawling networks. As such, most forms of storage and traditional copper networking has become increasingly inadequate and will likely hit a wall in a few short years.
Add these limitations to the cloud, the massive movement of data to the most optimized resource, and virtualization. What do you get? The potential for the mother of all performance killers - the current server and storage architecture.
Memristors + Tiny Cheap Cores
But what if you could break the storage, networking, and processor elements into tiny parts that could be reassigned and grouped in close proximity on demand?
Well, Memristors represent the best aspects of both magnetic media (they are non-volatile) and flash (they are fast to read and write, consume little power, and are solid state). So, what if you took these storage elements and put them in groups in close proximity, perhaps on the same boards, as ARM processors?
You’d then have ultrafast high-capacity storage in extreme proximity to power efficient cores. Meaning, half Memristor-powered racks would likely be equivalent to several racks of more traditional products. In addition, the close proximity, coupled with the high on-board speed and optical fiber connections between the boards, should result in not only a sharp performance increase but also facilitate massive power savings.
While the end products likely would initially look a lot like existing server blades or rack mounted servers, they could be built in almost any configuration; as while the circuit density is high, the thermal requirements are actually comparatively low. Since proximity will be the major problem - imagine servers that look more like balls or cubes than they do today at some future point to minimize the distance between components that may need to dynamically share loads.
In short, HP opened up a can of whoop-ass on the technology market and we really don’t see that very often.
Wrapping Up: Personal Technology?
Smartphones and tablets kicked off the trend toward very low cost cores and eventually, what appears to be an aggressively redesigned computing architecture. However, many of these changes can be applied to future generations of PCs, tablets and smartphones - providing ever higher performance at ever lower battery life.
Just try and think of future devices that will revolutionize the market by making current-gen iPads and iPhones look fat, slow, and power hungry. Of course, irrespective of whether or not this actually happens, the good news is that HP is back to providing product drama, something which is long overdue. The Meg Whitman HP is certainly looking better and better all the time.
quote:We report sub-nanosecond switching of a metal–oxide–metal memristor utilizing a broadband 20 GHz experimental setup developed to observe fast switching dynamics. Set and reset operations were successfully performed in the tantalum oxide memristor using pulses with durations of 105 and 120 ps, respectively. Reproducibility of the sub-nanosecond switching was also confirmed as the device switched over consecutive cycles.
iopsciencequote:In this work we demonstrated a platform for conducting
broadband dynamical studies of impedance mismatched
memristors. Tantalum oxide junctions were fabricated on
coplanar waveguide structures and reproducible resistance
switching of the order of 100 ps was shown. The measured
switching speed of this nonvolatile memory element is
comparable to or faster than mainstream volatile memories
such as DRAM and SRAM, and four orders of magnitude
faster than mainstream nonvolatile Flash. Additionally, the
result presented here opens new possibilities for the use of
memristors in high-speed high-frequency circuit applications.
......
The observed switching speed in this experiment was
limited by the pulse generator and not by the memristive device
itself nor by the transmission line structure. As a consequence,
one can envision that faster switching speeds in the double
digit picosecond range might be obtained by employing a faster
pulse generator as well as a compatible sample area in order to
minimize the parasitic effects associated with the memristor’s
parasitic capacitance.
Bronquote:During IDEM, which is held in Washington, D.C. this week, the European research institute IMEC has shown the first 10nm RRAM cell. RRAM is often also referred to as a memristor.
The area of the cell is 100nm² and is based on hafnium/hafnium-oxide as the switching material. This material is placed between conventional contacts in a cross bar array. The contacts are made of titanium-nitride.
Cross section of IMEC 10nm RRAM cell. Copyright IMEC.
The cell has demonstrated an endurance of more than 1 billion reads/writes and switches in about 1ns. IMEC has extrapolated the data retention period to 10 years at 100 degrees C. Excellent life-span next to a hot GPU.
If manufacturing hurdles can be overcome, then this cell clearly demonstrates that RRAM will be superior to both NAND flash as well as conventional DRAM.
In order to use its potential fully then programmers will start to think of different ways to write programs since memory and storage over time could merge to one large linear space.
Cool! Ik heb memristors altijd al interessant gevonden ivm de "continue" opslag eigenschap die erg lijkt op die van een synaps in de menselijke hersens. (Natuurlijk is dit maar een klein klein onderdeel van de mechanismen daar..)quote:Op donderdag 15 december 2011 23:07 schreef Digi2 het volgende:
[..]
Bron
[ afbeelding ]
Hafnium als memristor-substraat is dus ook geschikt. Hafnium wordt sinds kort gebruikt als HKMG omdat hafnium-oxide een betere isolator is dan het gebruikelijke silicium-oxide. Bij de nanostucturen die men nu gebruikt kan men daarmee de aanzienlijke lekstromen reduceren. De halfgeleider industrie is dus als bekent met het toepassen van Hafnium in IC´s. Dit maakt een snelle lab to market introductie mogelijk zoals ook met het titanium wat HP gebruikt in hun memristors. Hafnium is echter veel kostbaarder dan titanium.
Bronquote:Elpida Announces 64Mb ReRAM, Sees 8Gb Product in 2013
Jan 26, 2012 12:03 Jyunichi Oshita, Nikkei Electronics
Elpida Memory had a press conference Jan 24, 2012, and Takao Adachi, who is responsible for the development of the new memory, explained about the latest technology.
The new ReRAM. Each of its four areas is a 64-Mbit memory array.
Elpida Memory Inc developed ReRAM (resistive random-access memory), which is expected to be one of the next-generation nonvolatile memories.
The company prototyped the ReRAM by using 50nm process technology to form 64-Mbit cell arrays and confirmed operation of all bits. It has already started making efforts towards commercialization of the ReRAM.
"We want to launch an 8-Gbit product made by using 30nm process technology (as the first product) in 2013," said Takao Adachi, director of Elpida. "We will be ready for full-scale volume production in 2014."
Elpida plans to target the ReRAM at mobile machines such as smartphones, tablet computers and notebook computers. It expects that the ReRAM will be used as cache memory to fill a performance gap between DRAM and NAND flash memory in those machines.
"We hope that it will eventually be a memory that can replace DRAM because mobile machine makers want to reduce the amount of DRAM (which consumes a large amount of power) as much as possible and replace it with nonvolatile memory," Adachi said.
At this point, however, many of its customers that develop video-related stationary machines and want to enhance the speed of SSD are showing interest in the ReRAM, he said.
The new ReRAM is a 1T-1R-type ReRAM developed by using variable resistance elements based on hafnium (Hf) oxide. Its data reading speed is 20ns or faster, and it can be rewritten one million times or more. Elpida plans to completely clarify the mechanism of its operation and reduce the variation in the operation of memory elements in the aim of increasing its capacity to higher than 1 Gbit.
Though the ReRAM was prototyped by using 6F2 cells this time, Elpida intends to use 4F2 cells for volume production of the memory and reduce cell area. It can be mass-produced in production lines for DRAMs. For volume production, the company aims to achieve a bit cost 30% lower than that of DRAM.
Elpida has already decided to develop only ReRAM as its next-generation nonvolatile memory and is not developing MRAM (magnetic random access memory) or PRAM (phase-change random access memory).
The ReRAM was developed in collaboration with Sharp Corp, Japan's National Institute of Advanced Industrial Science and Technology (AIST) and the University of Tokyo in a project sponsored by New Energy and Industrial Technology Development Organization (NEDO) (See related article). The project was launched in 2010.
quote:Op donderdag 2 september 2010 00:49 schreef Maanvis het volgende:
wow, als dit er komt dan kan ik toch zeggen tegen mijn vrienden dat ik erbij was toen het bedacht werd op FOK!
quote:Panasonic and TSMC Tip Resistive RAMs at ISSCC
Foundry looking for embedded memory solution
-----------------------
By Mark LaPedus, SemiMD senior editor
The emerging resistive RAM (ReRAM) market continues to heat up, as Panasonic and Taiwan Semiconductor Manufacturing Co. Ltd. (TSMC) will describe new breakthroughs in the arena.
At the International Solid-State Circuits Conference (ISSCC) in San Francisco on Wednesday (Feb. 22), TSMC will describe a ReRAM as part of the silicon foundry’s push in the embedded memory space. TSMC, along with National Tsing Hua University in Hsinchu, Taiwan, will disclose the development of a 0.5-Volt, 4-Mbit embedded ReRAM macro, based on a 65nm logic process.
At ISSCC, Panasonic will describe an 8-Mbit multi-layered cross-point ReRAM macro. The device has a 443-MB/second write throughput at 8.2nm pulse widths, which is twice as fast as competing efforts, according to Panasonic. Read access time is said to be 25ns.
Last year, Panasonic claimed to be sampling a 2-Mbit ReRAM, based on a tantalum and oxygen (TaOx) process. The 8-Mbit ReRAM uses the same technology, reportedly based on a 0.18-micron process.
Panasonic's ReRAM structure (Source: Company)
The ISSCC announcements follow what could be the hottest technology within the next-generation memory space. Elpida, Hynix, IMEC, Micron, Samsung, Sharp, Sony and others are working on ReRAM. ReRAM is “based on the electronic switching of a resistor element material between two stable (low/high) resistive states. The major strengths of ReRAM technology are its potential density and speed,” according to IMEC.
FRAM, MRAM, phase-change, ReRAM and others fall into the so-called universal memory category. Developers of these technologies claim their respective technologies can replace DRAM, NAND and NOR — or all three.
Most next-generation memory types have failed to live up to their promises. They are difficult to make and scale. But some claim the floating gate structure in flash is expected to hit the wall at 14nm, thereby fueling the need for a new memory type.
There are a range of emerging applications for next-generation memories. One of the possibilities is so-called storage-class memories. In this application, there is a need for a new and faster memory that sits between the processor and DRAM in a system to boost I/O performance. In theory, a storage-class memory would offload many of the functions in a power-hungry DRAM.
Block diagram of ReRAM from National Tsing Hua University and TSMC (Source: TSMC, National Tsing)
Embedded is another application. Many foundries offer embedded DRAM IP for system LSIs and other applications, but the technology could soon hit the scaling wall.
In embedded applications, “MRAM and ReRAM have the most promise,” said Fu-Lung Hsueh, a TSMC fellow and director of the Design Technology Division for the foundry giant, in a brief interview at ISSCC.
For some time, TSMC and Qualcomm Inc. have been developing an embedded memory based on MRAM technology. In the future, Qualcomm hopes to incorporate the MRAM IP within its cell-phone chip offerings.
ReRAM is another possibility for the embedded market. TSMC and National Tsing Hua University are developing a ReRAM solution. Hsueh said the device is still in the “prototyping” stage and the work is being conducted at the university level.
That device is said to enable short write times at low voltages. The 4-Mbit macro has four 1-Mbit sub-arrays, comprising of 2,048 columns and 512 rows, according to a paper from TSMC and National Tsing Hua. The entities developed a body-drain-driven current-mode sense amplifier (CSA) and small voltage headroom (VHR) for larger sensing margins. Using a new sensing scheme, the device is said to have a 45ns random read time, according to the paper.
zdnetquote:Ook Sandisk zet in op SSD-killer ReRAM
Geheugen van de toekomst
22 februari 2012 | Jan Custers
ZDNet.nl
Flashgeheugenfabrikant Sandisk zet een team van specialisten op de ontwikkeling van ReRAM-geheugen. Dat zou zowel het hedendaagse werk- als opslaggeheugen kunnen vervangen.
Sandisk plaatste vorige week een vacature op zijn website voor een verantwoordelijke van een dertigkoppig onderzoeksteam dat de productie van op memristors gebaseerd resistief RAM-geheugen (ReRAM) mogelijk moet maken. Het doet dat in samenwerking met partner Toshiba. Dat merkte Bright Side of News op.
Technologie evolueert snel
Vorige maand beweerde de Japanse geheugenfabrikant Elpida dat het samen met elektronicagigant Sharp een prototype van ReRAM-geheugen had ontwikkeld met dezelfde lees- en schrijfsnelheden als het DRAM-geheugen in hedendaagse computers.
Ook Panasonic, Sony, Micron, DSI en HP - in samenwerking met Hynix Seminconductor – investeren in de technologie. Die steunt op de revolutionaire ‘memristor’ die HP in 2008 ontwikkelde. Het eerste commerciële ReRAM-product wordt rond 2013 verwacht.
Snel en niet-vluchtig
ReRAM wordt naar voren geschoven als de opvolger van zowel het huidige systeem- als opslaggeheugen in computers. De technologie combineert de lees- en schrijfsnelheid van DRAM-geheugen met de niet-vluchtige aard van flashgeheugen. Dat betekent dat gegevens bewaard blijven als de spanning wegvalt. In theorie zal een computer met genoeg ReRAM-geheugen geen laadtijden meer kennen.
Gizmoquote:Samsung realizes ReRAM's rewritability of one trillion times
Resistive Random Access Memory (ReRAM) technology has been making the news rounds throughout the electronic market since its inception back in 1997. Panasonic had led the way for commercial mass production as this next generation iteration of non-volatile memory types is being developed by a multitude of companies. But this time, Samsung has rather notched a level by contriving a performance enhancing technology, which boosts the ReRAM's rewritability capacity to a mind-boggling 1 trillion times!
Fundamentally, this new advanced technology utilizes asymmetric Ta2O5-x/TaO2-x bi-layer laminated film as the resistivity-varying material, instead of the conventional Ta2O5 film. The new material contributes to localized resistance switching. The reduction in switching current in turn allows for lesser power consumption, along with extreme cycling endurance of over 1 trillion.
The figures speak for themselves as this touted one trillion mark capability is about one million times more than that of the latest flash memory. Moreover, with switching times of only 10ns, the fascinating technology can be applied in cases of working-memory space.
Het is een combinatie van geheugen en weerstandquote:Op donderdag 29 maart 2012 18:49 schreef Senor__Chang het volgende:
Kan iemand dit uitleggen voor de leek?
Als ik het goed heb begrepen is het lijstje voordelen van zo'n component (als het doorontwikkeld wordt):quote:Op vrijdag 30 maart 2012 01:30 schreef Senor__Chang het volgende:
Dus computers worden nog sneller ofzo? En wat zouden we dan met die extra snelheid kunnen doen dat zo revolutionair is?
Ik ga uit van sarcasme maar toch nog even dit.quote:Op vrijdag 30 maart 2012 01:42 schreef Senor__Chang het volgende:
Oh ok, maar niks revolutionairs dus?
Ja. Wellicht. Het zijn vaak meerdere projecten en meerdere uitvindingen die deze lijn blijven aanduwen.quote:Op vrijdag 30 maart 2012 01:59 schreef Senor__Chang het volgende:
Ach so.. Dus hierdoor blijven computers exponentieel groeien. Dank voor de uitleg.
quote:IMEC to detail memristor progress at VLSI Symposia
R. Colin Johnson
PORTLAND, Ore.— The Interuniversity Microelectronics Centre (IMEC) will report next month on progress to make its memristor variation, called resistive-RAMs (RRAM), the dominate memory technology in four papers at the VLSI Symposia in Honolulu.
At the Symposia June 12 to 15, IMEC (Leuven, Belgium), which claims RRAM will be ready for reliable mass production below 20 nanometers, will describe its cross-bar architecture. IMEC claims the architecture is denser, faster and lower-power than flash, but suitable to replace any memory type, including DRAMs.
IMEC and other research groups backing variations of the memristor claim that, in the future, a single universal memory technology will replace flash memory and all vintages of random-access memories. The memristor was invented by by professor Leon Chua at the University of California-Berkeley and has been championed by Hewlett-Packard Co.
"HP is using the term memristor to describe a device which has certain I-V characteristics," said Malgorzata Jurczak, program manager memory devices at IMEC. "But such I-V characteristics are typical to any RRAM cell using oxygen vacancy migration in transition metal oxide."
HP is sandwiching titanium-oxides in its memristive crossbar arrays, but at VLSI Symposia IMEC will describe using hafnium-oxide and other formulations for its RRAMs. In addition, there are two different ways of performing the resistive switching, using interfacial modification where oxygen vacancies are migrated either towards or away from the interface, thus modulating the tunneling barrier between the electrode and the conductive part of the oxide. Alternatively, filamentary switching aligns the oxygen vacancies in a conduction path which can be ruptured or established by oxygen vacancy migration. Either way, the advantage is the same—ultra-high density cross-bar arrays that use programming voltages to migrate oxygen vacancies, thereby changing the resistance of the bit-cell in a non-volatile manner.
"HP is claiming to using interfacial type of switching," said Jurczak. "But in our papers we are using filamentary switching."
IMEC will report that it has achieved ultra-fast sub-nanosecond programming times and ultra-low power sub-500 nanoamp operating currents using filamentary switching. IMEC will also report improved bit-cell reliability by virtue of its sophisticated materials stack engineering.
"We are overcoming the scaling limitations of conventional flash memory cells," said Jurczak. "Major memory players joined our research program on emerging memory technologies, proving the value of our RRAM research to the global industry."
Summary titles of IMEC's four papers are: "Dynamic ‘Hour Glass’ Model for Set and Reset in Hafnium Oxide RRAM," "Ultralow sub-500nA Operating Current in High-Performance Bipolar RRAM Achieved Through Understanding-Based Stack-Engineering," "Process-Improved RRAM Cell Performance and Reliability and Paving the Way for Manufacturability and Scalability for High Density Memory Application," and "Field-Driven Ultrafast sub-ns RRAM Programming."
quote:Intel bouwt chip die hersenen nabootst
Door Bauke Schievink, maandag 18 juni 2012
Intel heeft een chip gemaakt die op vergelijkbare wijze werkt als het neurale netwerk in de hersenen. Zo zorgen de componenten in de chip er onder meer voor dat een elektrisch signaal net als bij neuronen via pulsen worden doorgestuurd.
De technologie is gebaseerd op lateral spin valves en memristors. De eerstgenoemde zijn kleine magneetjes die hun magnetisch veld van richting kunnen laten veranderen op basis van de spin van elektronen. Tezamen met memristors, weerstanden met geheugen, levert dit een circuit op waarin de elektrische signalen niet met een constante spanning worden doorgestuurd, maar juist pulserend werken.
Volgens de onderzoekers, die werkzaam zijn bij Intel, werken de spin valves in de chip op een aanzienlijk lagere spanning dan conventionele chips. De benodigde spanning is volgens de makers uit te drukken in millivolts, net als de neuronen in de hersenen. Uiteindelijk moet een dergelijk systeem, dat een neuromorphic chip wordt genoemd, het stroomverbruik kunnen terugdringen met een factor 15 tot 300 ten opzichte van conventionele chips.
In de hersenen worden ook elektrische circuits gevormd, waarvan neuronen de basis zijn. Zij vormen een elektrisch systeem waarin zij na activiatie signalen in pulsvorm doorsturen. Daarbij wordt een sterker signaal weergegeven door een hogere frequentie van elektrische prikkels. Uiteindelijk worden de signalen geïntegreerd in het centrale zenuwstelsel, waarvan het brein het hoofdbestanddeel is.
De door Intel ontworpen chip kan ingezet worden om rekenkernen mee te maken die op vergelijkbare wijze werken als de hersenen, waardoor simulatie gemakkelijker wordt. Dergelijke systemen kunnen worden ingezet om de hersenen te bestuderen, maar ook om meer rekenkracht mogelijk te maken bij een lager stroomverbruik. Wel is daarvoor meer onderzoek nodig. Hoewel een neuromorphic chip al voor hersenachtige systemen kan worden ingezet, is er meer nodig om daarvan een volledig functionerend systeem te maken.
Uhm, nee? Transistor en diode zijn wel fundamentele elementen. Het onderscheid zit hier tussen passieve lineare componenten en actieve non-lineare componenten (halfgeleiders). Een memristor is geen passief linear component, en zal dus ook niet in dat rijtje passen.quote:Op maandag 22 maart 2010 22:55 schreef Digi2 het volgende:
[..]
Tja, de transistor wordt door wetenschappers net als de diode niet beschouwd als een fundamenteel element,
Het is idd de vraag of het terecht is de memristor die status wel toe te dichten. Want een natuurkundige eenheid van memristance is er (nog) niet. Bij de weerstand luidt die in Ohm, Capaciteit in Farad en Inductie de Henry.
Als je het hebt over de impact van de transistor op ons dagelijks leven dan is de transistor zonder enige twijfel component nr1
Ik vermoed dat je element verward met component. Mij is geen eenheid van transistance of diodistance bekent. Een fundamenteel element is niet te beschrijven met andere fundamentele elementen.quote:Op maandag 18 juni 2012 15:55 schreef Ai_KaRaMBa het volgende:
[..]
Uhm, nee? Transistor en diode zijn wel fundamentele elementen. Het onderscheid zit hier tussen passieve lineare componenten en actieve non-lineare componenten (halfgeleiders). Een memristor is geen passief linear component, en zal dus ook niet in dat rijtje passen.
Verder is een natuurkundige eenheid van memristor ook kolder als ik je verhaal goed begrijp, want je kan dmv een instelstroom (ampere) boven drempelspanning (volt) de weerstand (ohm) onder de drempelspanning instellen. Dat is dus prima uit te drukken als een verband tussen de andere grootheden, en daar hoeft dus geen nieuwe grootheid voor bedacht te worden lijkt me...
Het is inderdaad zo dat een memristor een halfgeleider is. Maar onder de passieve elementen schijnt te vallen.quote:Op maandag 18 juni 2012 18:20 schreef Ai_KaRaMBa het volgende:
Ik bedoelde component idd; maar feit blijft dat die menristor ook een halfgeleider is, net als de transistor en diode. toch?
edit: artikel bekeken, en daar noemen ze het ook "basic element"... dubieus ?!
HPquote:Aren't there other fundamental passive devices that don't add energy to a circuit? What about diodes?
No, there are only four fundamental types of passive circuit elements. Diodes are just non-linear resistors - the resistance of a diode changes with the applied voltage, but if you turn off the voltage and start back at 0 volts, the resistance of the diode is the same as it was before at 0 volts, not what it was when the voltage was turned off. This is also true of a resistor that heats up and increases its resistance because of a temperature increase. Thus, neither a diode nor a heated resistor 'remember' their history. However, each type of fundamental circuit element is actually a family of devices with essentially an infinite number of higher order members. To see all the members of the four families of fundamental devices, see the following paper: Leon O. Chua, "Nonlinear Circuit Foundations for Nanodevices, Part I: The Four-Element Torus," Proc. IEEE 91, 1830-1859 (2003). This is a very educational paper, but requires a significant investment in effort to appreciate. Note: Part II has not appeared in the literature yet.
Nuquote:Pc's met nieuw geheugenelement memristor pas in 2014
AMSTERDAM - HP-computers met de memristor, een nieuw geheugenelement waardoor chips onder meer energiezuiniger en goedkoper moeten worden, zijn vertraagd tot begin 2014.
Foto: HP Dat laat het hoofd van de onderzoeksafdeling van HP weten.
In eerste instantie zouden de producten met memristors, een afkorting voor memory resistor, al in 2013 beschikbaar zijn.
De grootste pc-fabrikant wereldwijd maakte de ontdekking van het nieuwe elektronische component in 2008 al bekend en omschrijft het als 'het godselement in de elektronica'.
Geheugen
De memristor zou de opvolger van de transistor moeten worden. Door het nieuwe geheugenelement moeten processors veel energiezuiniger worden en zal het productieproces van chips goedkoper moeten zijn.
Op termijn zou de memristor zelfs het opslaan van gegevens op het werkgeheugen fundamenteel kunnen veranderen. Het component kan het werkgeheugen en vaste opslag namelijk combineren. Nu is dat nog gescheiden en worden gegevens op verschillende plekken opgeslagen.
Vervangen
De memristor kan alle gegevens op één plek opslaan en zo flashgeheuden, SSD, en RAM-geheugen vervangen. Dat levert ruimtebesparing in computers op. Ook is het geheugen dan niet meer gevoelig voor stroomuitval.
Niet alleen computers zullen profiteren van de nieuwe technologie, alle elektronische apparaten kunnen gebruikmaken van memristors.
2014
Apparaten met de nieuwe techniek komen waarschijnlijk pas in 2014 uit omdat er grote economische belangen aan de lancering verbonden zijn. Zo moet Hynix, de partner van HP bij het produceren van memristors, een flinke verandering ondergaan. Nu produceert het bedrijf bijvoorbeeld nog flashgeheugen.
Het is ook van economisch belang dat deze ontdekkingen gedaan worden. Onze hele moderne economie draait voor een groot deel op techniek. Kijk maar naar de gigantische rol die software/hardware bedrijven spelen tegenwoordig. Bijna alle grote beursgenoteerde bedrijven hebben te maken met techniek en computers.quote:Op vrijdag 30 maart 2012 02:00 schreef Senor__Chang het volgende:
Het was trouwens geen sarcasme. Ben gewoon een leek.
|
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |