abonnement Unibet Coolblue
pi_93805191
quote:
1s.gif Op maandag 7 maart 2011 18:17 schreef Pietverdriet het volgende:

[..]

Wat heb ik aan een theoretische terugverdientijd en levensduur als ik maar 2 jaar garantie krijg?
Bij de meeste zonnepanelen krijg je een 20 tot 25 jaar garantie dat hij na die periode nog minstens 80% van het vermogen kan leveren ten tijde het paneel geproduceerd is (onder bepaalde voorwaarden natuurlijk). Voorbeeldje

Hoeveel andere producten gebruik jij langer dan twee jaar die een dergelijke harde garantie bieden?
  maandag 14 maart 2011 @ 16:55:57 #52
37149 slashdotter3
Arrow to the knee!
pi_94103377
Ik wordt blij van dit onderwerp. persoonlijk denk ik dat het nog iets langer gaat duren dan de 5-10 jaar die de meest optimistische stemmen hier uitspreken. Maar goed nieuws is het zeker.
"Ow, my schnoz! My punim! My pupik! My genechtagazoink!"
pi_96976219
New solar product captures up to 95 percent of light energy

Efficiency is a problem with today's solar panels; they only collect about 20 percent of available light. Now, a University of Missouri engineer has developed a flexible solar sheet that captures more than 90 percent of available light, and he plans to make prototypes available to consumers within the next five years.

Patrick Pinhero, an associate professor in the MU Chemical Engineering Department, says energy generated using traditional photovoltaic (PV) methods of solar collection is inefficient and neglects much of the available solar electromagnetic (sunlight) spectrum. The device his team has developed – essentially a thin, moldable sheet of small antennas called nantenna – can harvest the heat from industrial processes and convert it into usable electricity. Their ambition is to extend this concept to a direct solar facing nantenna device capable of collecting solar irradiation in the near infrared and optical regions of the solar spectrum.

Working with his former team at the Idaho National Laboratory and Garrett Moddel, an electrical engineering professor at the University of Colorado, Pinhero and his team have now developed a way to extract electricity from the collected heat and sunlight using special high-speed electrical circuitry. This team also partners with Dennis Slafer of MicroContinuum, Inc., of Cambridge, Mass., to immediately port laboratory bench-scale technologies into manufacturable devices that can be inexpensively mass-produced.

"Our overall goal is to collect and utilize as much solar energy as is theoretically possible and bring it to the commercial market in an inexpensive package that is accessible to everyone," Pinhero said. "If successful, this product will put us orders of magnitudes ahead of the current solar energy technologies we have available to us today."

As part of a rollout plan, the team is securing funding from the U.S. Department of Energy and private investors. The second phase features an energy-harvesting device for existing industrial infrastructure, including heat-process factories and solar farms.

Within five years, the research team believes they will have a product that complements conventional PV solar panels. Because it's a flexible film, Pinhero believes it could be incorporated into roof shingle products, or be custom-made to power vehicles.

Once the funding is secure, Pinhero envisions several commercial product spin-offs, including infrared (IR) detection. These include improved contraband-identifying products for airports and the military, optical computing, and infrared line-of-sight telecommunications.

http://www.zeitnews.org/e(...)of-light-energy.html
"An educated citizenry is a vital requisite for our survival as a free people."
pi_96976226
We zullen het wel zien.
  woensdag 18 mei 2011 @ 07:47:53 #56
91182 Sealnova
Get your Smokey on!
pi_96976742
Weer zo'n uitvinding waar je nooit meer iets van hoort
pi_96976920
quote:
13s.gif Op woensdag 18 mei 2011 07:47 schreef Sealnova het volgende:
Weer zo'n uitvinding waar je nooit meer iets van hoort
waarschijnlijk omdat grote olie maatschappen die dingen voor veel geld opkopen om zo hun winst aan olie niet te laten zakken en dan de tech pas te gaan exploiteren als het omslag punt is bereikt...
  woensdag 18 mei 2011 @ 08:07:54 #58
176873 marcel-o
¯¯¯¯¯¯¯¯¯¯¯¯
pi_96976935
quote:
0s.gif Op woensdag 18 mei 2011 08:06 schreef tntkiller het volgende:

[..]

waarschijnlijk omdat grote olie maatschappen die dingen voor veel geld opkopen om zo hun winst aan olie niet te laten zakken en dan de tech pas te gaan exploiteren als het omslag punt is bereikt...
Dit, zelfde geval met smeerolie die je niet hoeft te vervangen.
| Wordfeud: marcel-o |plug.dj/uptempo |<-- draai zelf je platen
pi_96978976
Zelfde nieuws in NL, http://www.scientias.nl/w(...)ef-zonnepaneel/31354
Dat zou een flinke omslag betekenen, dan hou je thuis nog energie over joh, met gelijk aantal panelen die nu geplaatst worden op je dak krijg je bijna 5x zoveel energie. Leuk voor de groeiende markt van elektrische auto's ook.
Linux is denken in oplossingen. Niet in producten. --== The kernel, the whole kernel and nothing but the kernel, so help me Linus! ==--
  woensdag 18 mei 2011 @ 09:58:34 #60
188734 Revolution-NL
VOC Mentaliteit
pi_96979030
quote:
0s.gif Op woensdag 18 mei 2011 09:56 schreef CyberRat het volgende:
Zelfde nieuws in NL, http://www.scientias.nl/w(...)ef-zonnepaneel/31354
Dat zou een flinke omslag betekenen, dan hou je thuis nog energie over joh, met gelijk aantal panelen die nu geplaatst worden op je dak krijg je bijna 5x zoveel energie. Leuk voor de groeiende markt van elektrische auto's ook.
Daar zal de overheid blij van worden, allemaal burgers die onafhankelijk voorzien in hun eigen energie behoeften en dus niet minder afhankelijk zijn van derden.

Jammer dat de eerste protypes pas over 5 jaar op de markt zijn. Voordat je goedkope productie modellen heb ben je 10 jaar verder :(
pi_96993242
quote:
13s.gif Op woensdag 18 mei 2011 07:47 schreef Sealnova het volgende:
Weer zo'n uitvinding waar je nooit meer iets van hoort
Zei de expert :')
"An educated citizenry is a vital requisite for our survival as a free people."
pi_96993361
gaat by the way over licht opvangen, niet efficiency.

maar alsnog een grote vooruitgang!
pi_97015377
ScienceDaily: Your source for the latest research news and science breakthroughs

ScienceDaily (May 18, 2011) — An international team, of scientists, led by a team at Monash University has found the key to the hydrogen economy could come from a very simple mineral, commonly seen as a black stain on rocks.

Their findings, developed with the assistance of researchers at UC Davis in the USA and using the facilities at the Australian Synchrotron, was published in the journal Nature Chemistry on May 15, 2011.

Professor Leone Spiccia from the School of Chemistry at Monash University said the ultimate goal of researchers in this area is to create a cheap, efficient way to split water, powered by sunlight, which would open up production of hydrogen as a clean fuel, and leading to long-term solutions for our renewable energy crisis.

To achieve this, they have been studying complex catalysts designed to mimic the catalysts plants use to split water with sunlight. But the new study shows that there might be much simpler alternatives to hand.

"The hardest part about turning water into fuel is splitting water into hydrogen and oxygen, but the team at Monash seems to have uncovered the process, developing a water-splitting cell based on a manganese-based catalyst," Professor Spiccia said.

"Birnessite, it turns out, is what does the work. Like other elements in the middle of the Periodic Table, manganese can exist in a number of what chemists call oxidation states. These correspond to the number of oxygen atoms with which a metal atom could be combined," Professor Spiccia said.

"When an electrical voltage is applied to the cell, it splits water into hydrogen and oxygen and when the researchers carefully examined the catalyst as it was working, using advanced spectroscopic methods they found that it had decomposed into a much simpler material called birnessite, well-known to geologists as a black stain on many rocks."

The manganese in the catalyst cycles between two oxidation states. First, the voltage is applied to oxidize from the manganese-II state to manganese-IV state in birnessite. Then in sunlight, birnessite goes back to the manganese-II State.

This cycling process is responsible for the oxidation of water to produce oxygen gas, protons and electrons.

Co-author on the research paper was Dr Rosalie Hocking, Research Fellow in the Australian Centre for Electromaterials Science who explained that what was interesting was the operation of the catalyst, which follows closely natures biogeochemical cycling of manganese in the oceans.

"This may provide important insights into the evolution of Nature's water splitting catalyst found in all plants which uses manganese centres," Dr Hocking said.

"Scientists have put huge efforts into making very complicated manganese molecules to copy plants, but it turns out that they convert to a very common material found in the Earth, a material sufficiently robust to survive tough use."

The reaction has two steps. First, two molecules of water are oxidized to form one molecule of oxygen gas (O2), four positively-charged hydrogen nuclei (protons) and four electrons. Second, the protons and electrons combine to form two molecules of hydrogen gas (H2).

The experimental work was conducted using state-of-the art equipment at three major facilities including the Australian Synchrotron, the Australian National Beam-line Facility in Japan and the Monash Centre for Electron Microscopy, and involved collaboration with Professor Bill Casey, a geochemist at UC Davis.

"The research highlights the insight obtainable from the synchrotron based spectroscopic techniques -- without them the important discovery linking common earth materials to water oxidation catalysts would not have been made," Dr Hocking said.

It is hoped the research will ultimately lead to the development of cheaper devices, which produce hydrogen.

The work was primarily funded by the U.S. National Science Foundation and the U.S. Department of Energy Monash University, the Australian Research Council through the Australian Centre of Excellence for Electromaterials Science, and the Australian Synchrotron.

http://www.sciencedaily.com/releases/2011/05/110516102331.htm

zo nu hebben we ook een opslag medium.... klaar nu...weg met de olie..:D
pi_97016912
quote:
0s.gif Op donderdag 19 mei 2011 00:03 schreef tntkiller het volgende:
ScienceDaily: Your source for the latest research news and science breakthroughs

ScienceDaily (May 18, 2011) — An international team, of scientists, led by a team at Monash University has found the key to the hydrogen economy could come from a very simple mineral, commonly seen as a black stain on rocks.

...

The work was primarily funded by the U.S. National Science Foundation and the U.S. Department of Energy Monash University, the Australian Research Council through the Australian Centre of Excellence for Electromaterials Science, and the Australian Synchrotron.

http://www.sciencedaily.com/releases/2011/05/110516102331.htm

zo nu hebben we ook een opslag medium.... klaar nu...weg met de olie..:D
Volgens mij hetzelfde idee als Daniel Nocera:
Daniel Nocera - in de komende 5 jaar een waterstofenergie revolutie(?)

Check verder ook de Bloombox, daarover is op youtube wel het een en ander te vinden. Vooral die korte docu van 60 minutes is wel interessant.

In de komende tien jaar zal het allemaal gaan veranderen, daarvan ben ik overtuigd. De stormachtige onwtikkeling van de pc en de mobiele telefoon zag men ook niet aankomen, maar binnen korte tijd waren ze daar en werden ze een onmisbaar deel van ons leven.

Ditzelfde zal gaan gebeuren op het gebied van energie in de komende tien jaar ^O^
"An educated citizenry is a vital requisite for our survival as a free people."
pi_97827386
MIT’s New Liquid Flow Batteries Could Make Refueling EVs as Fast as Pumping Gas

A team of researchers at MIT set out to “reinvent the rechargeable battery” and succeeded by creating a liquid-flow battery, suitable for electric vehicles that can be recharged as quickly as simply pumping gas and could halve the cost of current EV batteries. The new batteries involve a semi-solid, liquid electrolyte material which holds suspended positive and negative electrodes that provide needed electricity. When all the energy has been zapped out of the amorphous material, you can simply remove it from the battery — recharge it for future use — and replace it with fully charged goo. The team at MIT envisions this happening in much the same way — and about the same amount of time — that we’re all used to pumping gas.

This kind of liquid flow battery is not new, but prior research teams were not able to find a material that had high enough energy density to make the batteries plausible. With lower energy density needed to make huge structures to hold the batteries, the MIT team has managed to find a material — shown above on the right — that ups the energy density of prior liquid flow batteries ten fold. This improvement made the structures small enough to be plausible for use in electric vehicles, large energy storage facilities as well as smaller applications.

The researchers came up with the idea for their liquid flow battery by combining the traditional positive and negative electrodes of a lithium-ion battery — now used in most electric vehicles — with the suspension ideas of a liquid flow battery. By suspending the positive and negative electrodes in the battery — in traditional lithium-ion batteries they are stationary — the team made it possible to replace the battery’s energy making system without having to recharge it within the batteries structure. By creating this new, less expensive design the research team believes they could bring down the cost of electric vehicles to make them more competitive with gas-powered vehicles.

http://www.zeitnews.org/t(...)efueling-faster.html
"An educated citizenry is a vital requisite for our survival as a free people."
  dinsdag 7 juni 2011 @ 07:17:49 #66
19440 Maanvis
Centuries in a lifetime
pi_97827646
quote:
0s.gif Op donderdag 19 mei 2011 00:03 schreef tntkiller het volgende:
ScienceDaily: Your source for the latest research news and science breakthroughs

ScienceDaily (May 18, 2011) — An international team, of scientists, led by a team at Monash University has found the key to the hydrogen economy could come from a very simple mineral, commonly seen as a black stain on rocks.

Their findings, developed with the assistance of researchers at UC Davis in the USA and using the facilities at the Australian Synchrotron, was published in the journal Nature Chemistry on May 15, 2011.

Professor Leone Spiccia from the School of Chemistry at Monash University said the ultimate goal of researchers in this area is to create a cheap, efficient way to split water, powered by sunlight, which would open up production of hydrogen as a clean fuel, and leading to long-term solutions for our renewable energy crisis.

To achieve this, they have been studying complex catalysts designed to mimic the catalysts plants use to split water with sunlight. But the new study shows that there might be much simpler alternatives to hand.

"The hardest part about turning water into fuel is splitting water into hydrogen and oxygen, but the team at Monash seems to have uncovered the process, developing a water-splitting cell based on a manganese-based catalyst," Professor Spiccia said.

"Birnessite, it turns out, is what does the work. Like other elements in the middle of the Periodic Table, manganese can exist in a number of what chemists call oxidation states. These correspond to the number of oxygen atoms with which a metal atom could be combined," Professor Spiccia said.

"When an electrical voltage is applied to the cell, it splits water into hydrogen and oxygen and when the researchers carefully examined the catalyst as it was working, using advanced spectroscopic methods they found that it had decomposed into a much simpler material called birnessite, well-known to geologists as a black stain on many rocks."

The manganese in the catalyst cycles between two oxidation states. First, the voltage is applied to oxidize from the manganese-II state to manganese-IV state in birnessite. Then in sunlight, birnessite goes back to the manganese-II State.

This cycling process is responsible for the oxidation of water to produce oxygen gas, protons and electrons.

Co-author on the research paper was Dr Rosalie Hocking, Research Fellow in the Australian Centre for Electromaterials Science who explained that what was interesting was the operation of the catalyst, which follows closely natures biogeochemical cycling of manganese in the oceans.

"This may provide important insights into the evolution of Nature's water splitting catalyst found in all plants which uses manganese centres," Dr Hocking said.

"Scientists have put huge efforts into making very complicated manganese molecules to copy plants, but it turns out that they convert to a very common material found in the Earth, a material sufficiently robust to survive tough use."

The reaction has two steps. First, two molecules of water are oxidized to form one molecule of oxygen gas (O2), four positively-charged hydrogen nuclei (protons) and four electrons. Second, the protons and electrons combine to form two molecules of hydrogen gas (H2).

The experimental work was conducted using state-of-the art equipment at three major facilities including the Australian Synchrotron, the Australian National Beam-line Facility in Japan and the Monash Centre for Electron Microscopy, and involved collaboration with Professor Bill Casey, a geochemist at UC Davis.

"The research highlights the insight obtainable from the synchrotron based spectroscopic techniques -- without them the important discovery linking common earth materials to water oxidation catalysts would not have been made," Dr Hocking said.

It is hoped the research will ultimately lead to the development of cheaper devices, which produce hydrogen.

The work was primarily funded by the U.S. National Science Foundation and the U.S. Department of Energy Monash University, the Australian Research Council through the Australian Centre of Excellence for Electromaterials Science, and the Australian Synchrotron.

http://www.sciencedaily.com/releases/2011/05/110516102331.htm

zo nu hebben we ook een opslag medium.... klaar nu...weg met de olie..:D
Dus, wanneer komen deze goedkope waterstofgenerators op de markt? Ik zal dit topique over een half jaartje maar weer eens kicken :).
Trots lid van het 👿 Duivelse Viertal 👿
Een gedicht over Maanvis
Het ONZ / [KAMT] Kennis- en Adviescentrum Maanvis Topics , voor al je vragen over mijn topiques!
  dinsdag 7 juni 2011 @ 07:19:46 #67
19440 Maanvis
Centuries in a lifetime
pi_97827658
quote:
0s.gif Op woensdag 18 mei 2011 04:38 schreef Probably_on_pcp het volgende:
New solar product captures up to 95 percent of light energy

Efficiency is a problem with today's solar panels; they only collect about 20 percent of available light. Now, a University of Missouri engineer has developed a flexible solar sheet that captures more than 90 percent of available light, and he plans to make prototypes available to consumers within the next five years.

Patrick Pinhero, an associate professor in the MU Chemical Engineering Department, says energy generated using traditional photovoltaic (PV) methods of solar collection is inefficient and neglects much of the available solar electromagnetic (sunlight) spectrum. The device his team has developed – essentially a thin, moldable sheet of small antennas called nantenna – can harvest the heat from industrial processes and convert it into usable electricity. Their ambition is to extend this concept to a direct solar facing nantenna device capable of collecting solar irradiation in the near infrared and optical regions of the solar spectrum.

Working with his former team at the Idaho National Laboratory and Garrett Moddel, an electrical engineering professor at the University of Colorado, Pinhero and his team have now developed a way to extract electricity from the collected heat and sunlight using special high-speed electrical circuitry. This team also partners with Dennis Slafer of MicroContinuum, Inc., of Cambridge, Mass., to immediately port laboratory bench-scale technologies into manufacturable devices that can be inexpensively mass-produced.

"Our overall goal is to collect and utilize as much solar energy as is theoretically possible and bring it to the commercial market in an inexpensive package that is accessible to everyone," Pinhero said. "If successful, this product will put us orders of magnitudes ahead of the current solar energy technologies we have available to us today."

As part of a rollout plan, the team is securing funding from the U.S. Department of Energy and private investors. The second phase features an energy-harvesting device for existing industrial infrastructure, including heat-process factories and solar farms.

Within five years, the research team believes they will have a product that complements conventional PV solar panels. Because it's a flexible film, Pinhero believes it could be incorporated into roof shingle products, or be custom-made to power vehicles.

Once the funding is secure, Pinhero envisions several commercial product spin-offs, including infrared (IR) detection. These include improved contraband-identifying products for airports and the military, optical computing, and infrared line-of-sight telecommunications.

http://www.zeitnews.org/e(...)of-light-energy.html
Waar kan ik een offerte aanvragen voor zo'n zonnepaneel? Hier staat dat ze er nu al 1 hebben met 90% efficiëntie. Die wil ik wel kopen dan. En waarom 5 jaar rollout periode? Ze hebben het nu toch al?
Trots lid van het 👿 Duivelse Viertal 👿
Een gedicht over Maanvis
Het ONZ / [KAMT] Kennis- en Adviescentrum Maanvis Topics , voor al je vragen over mijn topiques!
pi_97827688
quote:
0s.gif Op dinsdag 7 juni 2011 07:19 schreef Maanvis het volgende:

[..]

Waar kan ik een offerte aanvragen voor zo'n zonnepaneel? Hier staat dat ze er nu al 1 hebben met 90% efficiëntie. Die wil ik wel kopen dan. En waarom 5 jaar rollout periode? Ze hebben het nu toch al?
Ze willen eerst kijken hoe mooi en luxe de fabriek en de kantoren moeten worden.

En dan een goed plan bedenken om de consument zo veel mogelijk uit te knijpen.
Als het niet met een hamer te repareren is, is het een elektrisch probleem.
pi_97830896
Feit met alle bovenstaande nieuwsberichten is dat het geen specialistische tijdschriften zijn. Het grootste gedeelte van de de bronnen in de berichten zijn de claims van onderzoekers zelfs, die dan vaak ook nog eens selectief gepubliceerd worden. Zoals al eerder genoemd, hoor je daar vaker niets meer van.

Als je werkelijk betrouwbaar nieuws in deze vakgebieden wil lezen moet je toch echt naar peer-reviewed papers gaan kijken. Dit zijn werkelijk wetenschappelijke papers die door een onderzoeksgroep gesteund worden, en die (voor zover mogelijk) geverifieerd worden door collega-wetenschappers in hetzelfde vakgebied.

Bovenstaand nieuws is allemaal heel leuk, maar bedenk voor jezelf eens: wat is meer waarschijnlijk? Dat al deze berichten echt waar zijn en de resultaten door oliebedrijven in de doofpot worden gestopt. Of dat het gewoon een stukje overdreven is, en een enthousiaste wetenschapper zijn kleinschalige resultaten extrapoleert naar een oplossing voor onze wereldproblemen.
  dinsdag 7 juni 2011 @ 12:32:40 #70
150517 SpecialK
No hesitation, no delay.
pi_97834276
Ik vraag me af of het rendement nog steeds 90% blijft bij temperaturen hoger dan 40 graden. (Zoals dat vaak op een plat dak voorkomt tijdens de zomer).

Hoe dan ook een goed streven. Als dit de echte opbrengst is en de prijs rond de 2000, tot 3000 euro blijft wil ik wel zo'n ding hebben.
There are no things, but as a consequence there are as many things as we like
  dinsdag 7 juni 2011 @ 12:43:00 #71
188734 Revolution-NL
VOC Mentaliteit
pi_97834548
quote:
7s.gif Op dinsdag 7 juni 2011 12:32 schreef SpecialK het volgende:
Ik vraag me af of het rendement nog steeds 90% blijft bij temperaturen hoger dan 40 graden. (Zoals dat vaak op een plat dak voorkomt tijdens de zomer).

Hoe dan ook een goed streven. Als dit de echte opbrengst is en de prijs rond de 2000, tot 3000 euro blijft wil ik wel zo'n ding hebben.
De huidige PV systemen zijn ook al interessant met een terugverdientijd van 12 jaar (bij een de huidige kwh prijs en zonder subsidie). Met een levensduur van 30 jaar op je 18 jaar gratis energie.
pi_97851144
quote:
0s.gif Op dinsdag 7 juni 2011 10:33 schreef Solomon het volgende:

Bovenstaand nieuws is allemaal heel leuk, maar bedenk voor jezelf eens: wat is meer waarschijnlijk?
Hoe moeten wij nou weten wat meer waarschijnlijk is? Het klopt dat deze artikelen niet uit Nature komen, maar van een site waar dagelijks zo'n 7 a 8 artikelen verschijnen over mogelijke technologische doorbraken. En in het laatste artikel wordt bijv. MIT genoemd. Waarom zullen zij hun goeie naam te grabbel gooien?

En de tijd dat Big-oil bepaalde hoe de wereld eruit zag is ook op zijn einde aan het lopen. Er zijn genoeg sillicon-valley uitvinders die de wereld willen verbeteren en inzien dat de petroleum-industrie een vijand is. Kijk bijv. naar hoe Daniel Nocera zijn waterstoftechnologie in de markt aan het zetten is. Hij heeft er alles aan gedaan om ervoor te zorgen dat Big-oil geen vinger in de pap kan krijgen.

Het is wereldwijd inmiddels voor de meeste mensen duidelijk dat we geen proactiviteit hoeven te verwachten van de olie-industrie en veel vooraanstaande wetenschappers weten ook dat in het verleden patenten zijn opgekocht waar vervolgens niets mee is gedaan. En deze wetenschappers hebben zelf ook kinderen en zullen de toekomst van hun kind voorop plaatsen ipv te zwichten voor het grote geld.
"An educated citizenry is a vital requisite for our survival as a free people."
  dinsdag 7 juni 2011 @ 22:15:11 #73
150517 SpecialK
No hesitation, no delay.
pi_97862792
quote:
0s.gif Op dinsdag 7 juni 2011 12:43 schreef Revolution-NL het volgende:

[..]

De huidige PV systemen zijn ook al interessant met een terugverdientijd van 12 jaar (bij een de huidige kwh prijs en zonder subsidie). Met een levensduur van 30 jaar op je 18 jaar gratis energie.
Ik kwam bij die panelen die de overheid een aantal jaren met subsidie in onze buurt aanbood met een berekening op een terugverdientijd van minimaal 25 jaar. En Toen hield ik nog nieteens rekening met het drastische rendementsverlies die die dingen nu nog hebben bij temperaturen van > 40 C.

Mij nog niet gezien
There are no things, but as a consequence there are as many things as we like
  dinsdag 7 juni 2011 @ 23:00:00 #74
188734 Revolution-NL
VOC Mentaliteit
pi_97865853
quote:
10s.gif Op dinsdag 7 juni 2011 22:15 schreef SpecialK het volgende:

[..]

Ik kwam bij die panelen die de overheid een aantal jaren met subsidie in onze buurt aanbood met een berekening op een terugverdientijd van minimaal 25 jaar. En Toen hield ik nog nieteens rekening met het drastische rendementsverlies die die dingen nu nog hebben bij temperaturen van > 40 C.

Mij nog niet gezien
Een aantal jaar was de prijs per WP inderdaad 2x zo hoog. Wat dat betreft zijn zonnepanelen de laatste paar jaar enorm in prijs gedaald.
pi_99352699
Binnenkort kopen we speciale inkt voor onze deskjet-printers en dan printen we de zonnepanelen gewoon uit!



The sheet of paper looks like any other document that might have just come spitting out of an office printer, with an array of colored rectangles printed over much of its surface. But then a researcher picks it up, clips a couple of wires to one end, and shines a light on the paper. Instantly an LCD clock display at the other end of the wires starts to display the time.

Almost as cheaply and easily as printing a photo on your inkjet, an inexpensive, simple solar cell has been created on that flimsy sheet, formed from special “inks” deposited on the paper. You can even fold it up to slip into a pocket, then unfold it and watch it generating electricity again in the sunlight.

The new technology, developed by a team of researchers at MIT, is reported in a paper in the journal Advanced Materials, published online July 8. The paper is co-authored by Karen Gleason, the Alexander and I. Michael Kasser Professor of Chemical Engineering; Professor of Electrical Engineering Vladimir Bulovi?; graduate student Miles Barr; and six other students and postdocs. The work was supported by the Eni-MIT Alliance Solar Frontiers Program and the National Science Foundation.

The technique represents a major departure from the systems used until now to create most solar cells, which require exposing the substrates to potentially damaging conditions, either in the form of liquids or high temperatures. The new printing process uses vapors, not liquids, and temperatures less than 120 degrees Celsius. These “gentle” conditions make it possible to use ordinary untreated paper, cloth or plastic as the substrate on which the solar cells can be printed.

It is, to be sure, a bit more complex than just printing out a term paper. In order to create an array of photovoltaic cells on the paper, five layers of material need to be deposited onto the same sheet of paper in successive passes, using a mask (also made of paper) to form the patterns of cells on the surface. And the process has to take place in a vacuum chamber.

The basic process is essentially the same as the one used to make the silvery lining in your bag of potato chips: a vapor-deposition process that can be carried out inexpensively on a vast commercial scale.

The resilient solar cells still function even when folded up into a paper airplane. In their paper, the MIT researchers also describe printing a solar cell on a sheet of PET plastic (a thinner version of the material used for soda bottles) and then folding and unfolding it 1,000 times, with no significant loss of performance. By contrast, a commercially produced solar cell on the same material failed after a single folding.

“We have demonstrated quite thoroughly the robustness of this technology,” Bulovi? says. In addition, because of the low weight of the paper or plastic substrate compared to conventional glass or other materials, “we think we can fabricate scalable solar cells that can reach record-high watts-per-kilogram performance. For solar cells with such properties, a number of technological applications open up,” he says. For example, in remote developing-world locations, weight makes a big difference in how many cells could be delivered in a given load.

Gleason adds, “Often people talk about deposition on a flexible device — but then they don’t flex it, to actually demonstrate” that it can survive the stress. In this case, in addition to the folding tests, the MIT team tried other tests of the device’s robustness. For example, she says, they took a finished paper solar cell and ran it through a laser printer — printing on top of the photovoltaic surface, subjecting it to the high temperature of the toner-fusing step — and demonstrated that it still worked. Test cells the group produced last year still work, demonstrating their long shelf life.

In today’s conventional solar cells, the costs of the inactive components — the substrate (usually glass) that supports the active photovoltaic material, the structures to support that substrate, and the installation costs — are typically greater than the cost of the active films of the cells themselves, sometimes twice as much. Being able to print solar cells directly onto inexpensive, easily available materials such as paper or cloth, and then easily fasten that paper to a wall for support, could ultimately make it possible to drastically reduce the costs of solar installations. For example, paper solar cells could be made into window shades or wallpaper — and paper costs one-thousandth as much as glass for a given area, the researchers say.

For outdoor uses, the researchers demonstrated that the paper could be coated with standard lamination materials, to protect it from the elements.

http://www.zeitnews.org/e(...)me-a-solar-cell.html
"An educated citizenry is a vital requisite for our survival as a free people."
  dinsdag 12 juli 2011 @ 09:13:39 #76
19440 Maanvis
Centuries in a lifetime
pi_99355978
quote:
0s.gif Op dinsdag 12 juli 2011 02:13 schreef Probably_on_pcp het volgende:
Binnenkort kopen we speciale inkt voor onze deskjet-printers en dan printen we de zonnepanelen gewoon uit!
Aan hoeveel jaar denk je bij 'binnenkort'? Dan zet ik alvast een reminder in m'n outlook :)
Trots lid van het 👿 Duivelse Viertal 👿
Een gedicht over Maanvis
Het ONZ / [KAMT] Kennis- en Adviescentrum Maanvis Topics , voor al je vragen over mijn topiques!
  dinsdag 12 juli 2011 @ 11:01:40 #77
134009 Killaht
Words of Wisdom
pi_99358671
Alle daken van zonnepanelen dan voorzien ^O^
"Strange times are these in which we live
when old and young are taught in falsehoods school.
And the one man that dares to tell the truth is called at once a lunatic and fool"
  dinsdag 12 juli 2011 @ 13:23:54 #78
213785 zyx1981
Pepernoten iemand?
pi_99363720
quote:
0s.gif Op woensdag 18 mei 2011 08:06 schreef tntkiller het volgende:

[..]

waarschijnlijk omdat grote olie maatschappen die dingen voor veel geld opkopen om zo hun winst aan olie niet te laten zakken en dan de tech pas te gaan exploiteren als het omslag punt is bereikt...
quote:
0s.gif Op woensdag 18 mei 2011 08:07 schreef marcel-o het volgende:

[..]

Dit, zelfde geval met smeerolie die je niet hoeft te vervangen.
En daarom moet het patentensysteem worden beperkt tot 5 jaar. In die 5 jaar heb je het alleenrecht...daarna vervalt het aan de mensheid. Het is schandalig dat alle oplossingen voor problemen als olie, goedkope medicijnen, grote sprongen in de techniek, allemaal liggen opgeborgen in kluisjes. Puur en alleen zodat een zeer kleine groep grove korte-termijnwinsten kan maken :r
pi_99370587
quote:
0s.gif Op dinsdag 12 juli 2011 13:23 schreef zyx1981 het volgende:

[..]

En daarom moet het patentensysteem worden beperkt tot 5 jaar. In die 5 jaar heb je het alleenrecht...daarna vervalt het aan de mensheid. Het is schandalig dat alle oplossingen voor problemen als olie, goedkope medicijnen, grote sprongen in de techniek, allemaal liggen opgeborgen in kluisjes. Puur en alleen zodat een zeer kleine groep grove korte-termijnwinsten kan maken :r
Dat beperken tot 5 jaar, zou alle ontwikkelingen op gebied van medicijnen stilleggen.
Waarom zou een bedrijf dan nog 10-15 jaar lang tijd en geld investeren als ze die investering er nooit uit zullen krijgen?

Of denk jij dat technologische tegenwoordig nog steeds plaatsvindt op zolderkamertjes en een ontwikkeltijd heeft van weken/maanden? En dat voor een half maandsalaris?
Van ongelukken op de achterbank komen kinderen. Van kinderen op de achterbank komen ongelukken.
pi_99428783
Research update: New way to store sun's heat

A novel application of carbon nanotubes, developed by MIT researchers, shows promise as an innovative approach to storing solar energy for use whenever it’s needed.

Storing the sun’s heat in chemical form — rather than converting it to electricity or storing the heat itself in a heavily insulated container — has significant advantages, since in principle the chemical material can be stored for long periods of time without losing any of its stored energy. The problem with that approach has been that until now the chemicals needed to perform this conversion and storage either degraded within a few cycles, or included the element ruthenium, which is rare and expensive.

Last year, MIT associate professor Jeffrey Grossman and four co-authors figured out exactly how fulvalene diruthenium — known to scientists as the best chemical for reversibly storing solar energy, since it did not degrade — was able to accomplish this feat. Grossman said at the time that better understanding this process could make it easier to search for other compounds, made of abundant and inexpensive materials, which could be used in the same way.

Now, he and postdoc Alexie Kolpak have succeeded in doing just that. A paper describing their new findings has just been published online in the journal Nano Letters, and will appear in print in a forthcoming issue.

The new material found by Grossman and Kolpak is made using carbon nanotubes, tiny tubular structures of pure carbon, in combination with a compound called azobenzene. The resulting molecules, produced using nanoscale templates to shape and constrain their physical structure, gain “new properties that aren’t available” in the separate materials, says Grossman, the Carl Richard Soderberg Associate Professor of Power Engineering.

Not only is this new chemical system less expensive than the earlier ruthenium-containing compound, but it also is vastly more efficient at storing energy in a given amount of space — about 10,000 times higher in volumetric energy density, Kolpak says — making its energy density comparable to lithium-ion batteries. By using nanofabrication methods, “you can control [the molecules’] interactions, increasing the amount of energy they can store and the length of time for which they can store it — and most importantly, you can control both independently,” she says.
Thermo-chemical storage of solar energy uses a molecule whose structure changes when exposed to sunlight, and can remain stable in that form indefinitely. Then, when nudged by a stimulus — a catalyst, a small temperature change, a flash of light — it can quickly snap back to its other form, releasing its stored energy in a burst of heat. Grossman describes it as creating a rechargeable heat battery with a long shelf life, like a conventional battery.

One of the great advantages of the new approach to harnessing solar energy, Grossman says, is that it simplifies the process by combining energy harvesting and storage into a single step. “You’ve got a material that both converts and stores energy,” he says. “It’s robust, it doesn’t degrade, and it’s cheap.” One limitation, however, is that while this process is useful for heating applications, to produce electricity would require another conversion step, using thermoelectric devices or producing steam to run a generator.
While the new work shows the energy-storage capability of a specific type of molecule — azobenzene-functionalized carbon nanotubes — Grossman says the way the material was designed involves “a general concept that can be applied to many new materials.” Many of these have already been synthesized by other researchers for different applications, and would simply need to have their properties fine-tuned for solar thermal storage.

The key to controlling solar thermal storage is an energy barrier separating the two stable states the molecule can adopt; the detailed understanding of that barrier was central to Grossman’s earlier research on fulvalene dirunthenium, accounting for its long-term stability. Too low a barrier, and the molecule would return too easily to its “uncharged” state, failing to store energy for long periods; if the barrier were too high, it would not be able to easily release its energy when needed. “The barrier has to be optimized,” Grossman says.

Already, the team is “very actively looking at a range of new materials,” he says. While they have already identified the one very promising material described in this paper, he says, “I see this as the tip of the iceberg. We’re pretty jazzed up about it.”

Yosuke Kanai, assistant professor of chemistry at the University of North Carolina at Chapel Hill, says “the idea of reversibly storing solar energy in chemical bonds is gaining a lot of attention these days. The novelty of this work is how these authors have shown that the energy density can be significantly increased by using carbon nanotubes as nanoscale templates. This innovative idea also opens up an interesting avenue for tailoring already-known photoactive molecules for solar thermal fuels and storage in general.”

http://www.zeitnews.org/n(...)store-suns-heat.html

Nanotechnology _O_
"An educated citizenry is a vital requisite for our survival as a free people."
pi_99808010
Graphite + water = the future of energy storage

Dr Dan Li, of the Monash University Department of Materials Engineering, and his research team have been working with a material called graphene, which could form the basis of the next generation of ultrafast energy storage systems.

"Once we can properly manipulate this material, your iPhone, for example, could charge in a few seconds, or possibly faster." said Dr Li.

Graphene is the result of breaking down graphite, a cheap, readily available material commonly used in pencils, into layers one atom thick. In this form, it has remarkable properties.

Graphene is strong, chemically stable, an excellent conductor of electricity and, importantly, has an extremely high surface area.

Dr Li said these qualities make graphene highly suitable for energy storage applications.

"The reason graphene isn't being used everywhere is that these very thin sheets, when stacked into a usable macrostructure, immediately bond together, reforming graphite. When graphene restacks, most of the surface area is lost and it doesn't behave like graphene anymore."

Now, Dr Li and his team have discovered the key to maintaining the remarkable properties of separate graphene sheets: water. Keeping graphene moist - in gel form - provides repulsive forces between the sheets and prevents re-stacking, making it ready for real-world application.

"The technique is very simple and can easily be scaled up. When we discovered it, we thought it was unbelievable. We're taking two basic, inexpensive materials - water and graphite - and making this new nanomaterial with amazing properties," said Dr Li.

When used in energy devices, graphene gel significantly outperforms current carbon-based technology, both in terms of the amount of charge stored and how fast the charges can be delivered.

Dr Li said the benefits of developing this new nanotechnology extend beyond consumer electronics.

"High-speed, reliable and cost-effective energy storage systems are critical for the future viability of electricity from renewable resources. These systems are also the key to large-scale adoption of electrical vehicles.

"Graphene gel is also showing promise for use in water purification membranes, biomedical devices and sensors."

Dr Li has been working with graphene since 2006 and his team's research findings have recently been published in a number of prestigious journals including Advanced Materials, Angewandte Chemie and Chemical Communications.

Ook op het gebied van energie-opslag gaan we de goeie kant op ^O^
"An educated citizenry is a vital requisite for our survival as a free people."
pi_99898663
quote:
0s.gif Op vrijdag 22 juli 2011 19:03 schreef Probably_on_pcp het volgende:
Graphite + water = the future of energy storage

Ook op het gebied van energie-opslag gaan we de goeie kant op ^O^
Yep. En gezien het feit dat je hem binnen enkele seonden kunt opladen moet het rendement ook enorm goed zijn. (Geen accu van bv 1KWh die het overleeft als je er bv 1,2KWh in enkele seconden in moet stoppen om hem op te laden. Dat zou namelijk betekenen dat er in enkele seconden 0,2KWh omgezet wordt in warmte.)

Nu is alleen even de vraag: wat is de inwendige lekstroom van zo'n type accu? Oftewel: hoe snel ontlaadt hij zichzelf? Als dat net zo goed is als bv de Li-ion accu's dan betekent dit echt een revolutie op accu gebied.

Ik wacht het wel af. _O_
Ik ben diegene waar je moeder je altijd voor gewaarschuwd heeft...
pi_100095902
Sonnenschiff: Solar City Produces 4X the Energy it Consumes

Although net-zero projects have been creating a lot of buzz lately in the field of green building, the Sonnenschiff solar city in Freiburg, Germany is very much net positive. The self-sustaining city accomplishes this feat through smart solar design and lots and lots of photovoltaic panels pointed in the right direction. It seems like a simple strategy -- but designers often incorporate solar installations as an afterthought, or worse, as a label. Designed by Rolf Disch, the Sonnenschiff (Solar Ship) and Solarsiedlung (Solar Village) emphasize power production from the start by smartly incorporating a series of large rooftop solar arrays that double as sun shades. The buildings are also built to Passivhaus standards, which allows the project to produce four times the amount of energy it consumes!

The project started out as a vision for an entire community — the medium-density project balances size, accessibility, green space, and solar exposure. In all, 52 homes make up a neighborhood anchored to Sonnenschiff, a mixed-use residential and commercial building that emphasizes livability with a minimal footprint. Advanced technologies like phase-change materials and vacuum insulation significantly boost the thermal performance of the building’s wall system.

The homes are designed to the Passivhaus standard and have great access to passive solar heating and daylight. Each home features a very simple shed roof with deep overhangs that allows winter sun in while shading the building from the summer sun. The penthouses on top of the Sonnenschiff have access to rooftop gardens that make full use of the site’s solar resources. The rooftops feature rainwater recycling systems that irrigate the gardens and while supplying the toilets with greywater. The buildings also make use of wood chip boilers for heat in the winter, further decreasing their environmental footprint.

The project’s simple envelope design is brightened by a colorful and dynamic façade. Gardens and paths cross through the development as well, linking the inhabitants. Offices and stores expand the livability of the community while contributing a sense of communal purpose.

http://www.zeitnews.org/e(...)rgy-it-consumes.html
"An educated citizenry is a vital requisite for our survival as a free people."
pi_100159348
Het maakt niet uit hoe efficient we met energie kunnen omgaan. Feit blijft dat zodra efficiency stijgt dat de vraag ook stijgt. Dat is tot nu toe altijd nog de heersende formule geweest. De enige manier om energie te behouden is door het niet te gebruiken.
Doe eens lief!
pi_100201094
quote:
Solar cells get a boost from bouncing light
August 1, 2011 by Editor

Engineers from the University of Minnesota have improved the efficiency of a type of solar cell by as much as 26 percent.

These cells, known as dye-sensitized solar cells (DSSC), are made of titanium dioxide (TiO2), a photosensitive material that is less expensive than the more traditional silicon solar cells, which are rapidly approaching the theoretical limit of their efficiency.

Current DSSC designs, however, are only about 10 percent efficient. One reason for this low efficiency is that light from the infrared portion of the spectrum is not easily absorbed in the solar cell. The new layered design increases the path of the light through the solar cell and converts more of the electromagnetic spectrum into electricity.

The cells consist of micrometer-scale spheres with nanometer pores sandwiched between layers of nanoscale particles. The spheres, which are made of TiO2, act like tightly packed bumpers on a pinball machine, causing photons to bounce around before eventually making their way through the cell. Each time the photon interacts with one of the spheres, a small charge is produced.

The interfaces between the layers also help enhance the efficiency by acting like mirrors and keeping the light inside the solar cell where it can be converted to electricity. This strategy to increase light-harvesting efficiency can be easily integrated into current commercial DSSCs.
solar-cells-get-a-boost-from-bouncing-light
Geld maakt meer kapot dan je lief is.
Het zijn sterke ruggen die vrijheid en weelde kunnen dragen
  dinsdag 2 augustus 2011 @ 10:37:23 #86
134009 Killaht
Words of Wisdom
pi_100225522
quote:
0s.gif Op woensdag 18 mei 2011 08:06 schreef tntkiller het volgende:

[..]

waarschijnlijk omdat grote olie maatschappen die dingen voor veel geld opkopen om zo hun winst aan olie niet te laten zakken en dan de tech pas te gaan exploiteren als het omslag punt is bereikt...
Precies, alle technieken opkopen en patenten opvragen. Het eigenlijke doel van de bedrijven is niet meer, het gaat alleen nog maar om maximale winst tegenwoordig.

Verbeteringen en efficiëntere producten worden tegengehouden, eerst de oude troep maximaal uitmelken. Zo ook dus de fossiele brandstoffen, die bijna overal verwerkt in zitten. Zonde om dit schaarse goed in de lucht te verstoken met een brandstofmotor die 60 jaar over datum is.
"Strange times are these in which we live
when old and young are taught in falsehoods school.
And the one man that dares to tell the truth is called at once a lunatic and fool"
pi_100280695
Dream screens from graphene



Flexible, transparent electronics are closer to reality with the creation of graphene-based electrodes at Rice University.

The lab of Rice chemist James Tour lab has created thin films that could revolutionize touch-screen displays, solar panels and LED lighting. The research was reported in the online edition of ACS Nano.

Flexible, see-through video screens may be the "killer app" that finally puts graphene -- the highly touted single-atom-thick form of carbon -- into the commercial spotlight once and for all, Tour said. Combined with other flexible, transparent electronic components being developed at Rice and elsewhere, the breakthrough could lead to computers that wrap around the wrist and solar cells that wrap around just about anything.

The lab's hybrid graphene film is a strong candidate to replace indium tin oxide (ITO), a commercial product widely used as a transparent, conductive coating. It's the essential element in virtually all flat-panel displays, including touch screens on smart phones and iPads, and is part of organic light-emitting diodes (OLEDs) and solar cells.

ITO works well in all of these applications, but has several disadvantages. The element indium is increasingly rare and expensive. It's also brittle, which heightens the risk of a screen cracking when a smart phone is dropped and further rules ITO out as the basis for flexible displays.

The Tour Lab's thin film combines a single-layer sheet of highly conductive graphene with a fine grid of metal nanowire. The researchers claim the material easily outperforms ITO and other competing materials, with better transparency and lower resistance to electric current.

"Many people are working on ITO replacements, especially as it relates to flexible substrates," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. "Other labs have looked at using pure graphene. It might work theoretically, but when you put it on a substrate, it doesn't have high enough conductivity at a high enough transparency. It has to be assisted in some way."

Conversely, said postdoctoral researcher Yu Zhu, lead author of the new paper, fine metal meshes show good conductivity, but gaps in the nanowires to keep them transparent make them unsuitable as stand-alone components in conductive electrodes.

But combining the materials works superbly, Zhu said. The metal grid strengthens the graphene, and the graphene fills all the empty spaces between the grid. The researchers found a grid of five-micron nanowires made of inexpensive, lightweight aluminum did not detract from the material's transparency.

"Five-micron grid lines are about a 10th the size of a human hair, and a human hair is hard to see," Tour said.

Tour said metal grids could be easily produced on a flexible substrate via standard techniques, including roll-to-roll and ink-jet printing. Techniques for making large sheets of graphene are also improving rapidly, he said; commercial labs have already developed a roll-to-roll graphene production technique.

"This material is ready to scale right now," he said.

The flexibility is almost a bonus, Zhu said, due to the potential savings of using carbon and aluminum instead of expensive ITO. "Right now, ITO is the only commercial electrode we have, but it's brittle," he said. "Our transparent electrode has better conductivity than ITO and it's flexible. I think flexible electronics will benefit a lot."

In tests, he found the hybrid film's conductivity decreases by 20 to 30 percent with the initial 50 bends, but after that, the material stabilizes. "There were no significant variations up to 500 bending cycles," Zhu said. More rigorous bending test will be left to commercial users, he said.

"I don't know how many times a person would roll up a computer," Tour added. "Maybe 1,000 times? Ten thousand times? It's hard to see how it would wear out in the lifetime you would normally keep a device."

The film also proved environmentally stable. When the research paper was submitted in late 2010, test films had been exposed to the environment in the lab for six months without deterioration. After a year, they remain so.

"Now that we know it works fine on flexible substrates, this brings the efficacy of graphene a step up to its potential utility," Tour said.

http://www.zeitnews.org/n(...)s-from-graphene.html
"An educated citizenry is a vital requisite for our survival as a free people."
pi_101028553
German Village Produces 321% More Energy Than It Needs!

Ok, those Germans are just showing off now. Not only has the nation announced plans to shut down all of its nuclear power plants and started the construction of 2,800 miles of transmission lines for its new renewable energy initiative, but now the village of Wildpoldsried is producing 321% more energy than it needs! The small agricultural village in the state of Bavaria is generating an impressive $5.7 million in annual revenue from renewable energy.

It’s no surprise that the country that has kicked butt at the Solar Decathlon competition (to produce energy positive solar houses) year after year is the home to such a productive energy-efficient village. The village’s green initiative first started in 1997 when the village council decided that it should build new industries, keep initiatives local, bring in new revenue, and create no debt. Over the past 14 years, the community has equipped nine new community buildings with solar panels, built four biogas digesters (with a fifth in construction now) and installed seven windmills with two more on the way. In the village itself, 190 private households have solar panels while the district also benefits from three small hydro power plants, ecological flood control, and a natural waste water system.

All of these green systems means that despite only having a population of 2,600, Wildpoldsried produces 321 percent more energy than it needs – and it’s generating 4.0 million Euro (US $5.7 million) in annual revenue by selling it back to the national grid. It is no surprise to learn that small businesses have developed in the village specifically to provide services to the renewable energy installations.

Over the years the village’s green goals have been so successful that they have even crafted a mission statement — WIR–2020, Wildpoldsried Innovativ Richtungsweisend (Wildpoldsried Innovative Leadership). The village council hopes that it will inspire citizens to do their part for the environment and create green jobs and businesses for the local area.

As a result of the village’s success, Wildpoldsried has received numerous national and international awards for its conservation and renewable energy initiatives known as Klimaschutz (climate protection). The council even hosts tours for other village councils on how to start their own Klimaschutz program. The Mayor has even been doing global tours ever since the Fukushima disaster.

Mayor Zengerle has gone to Romania, Berlin and the Black Sea Region to speak about how these places can transform their communities and make money in the process. Speaking to Biocycle, Mayor Zengerle said, “The mitigation of climate change in practice can only be implemented with the citizens and with the Village Council behind them 100 percent of the way. This model cannot be forced from only one side. We often spend a lot of time talking to our visitors about how to motivate the village council (and Mayor) to start thinking differently. We show them a best practices model in motion and many see the benefits immediately. From the tour we give, our guests understand how well things can operate when you have the enthusiasm and conviction of the people.”

http://www.zeitnews.org/e(...)y-than-it-needs.html
"An educated citizenry is a vital requisite for our survival as a free people."
pi_101236568
Solar Company Breaks Record for Screen-Printed Solar Cell Efficiency

Over the years, new solar technology has broken a few records including solar energy concentration and solar vehicular speed. However this week, SCHOTT Solar announced that they had broken the record for screen-printed solar cell efficiency, after creating the world’s first monocrystalline screen-printed solar cell with a conversion efficiency of 20.2%.

Previously the record efficiency generated by a solar cell was 17.6% and was done through the use of multicrystalline solar cells. It is this method that SHOTT Solar’s Dr. Axel Metz, head of solar cell research and development at SCHOTT Solar, acknowledges as the greatest contributing factor for his team’s record.

“We’ve been concentrating on the development of monocrystalline cells since the start of 2011,” he said. “We had three years of experience with the multicrystalline cells to carry over to the monocrystalline concept.”

The team’s initial trials can created cell efficiency of over 19%, but this wasn’t deemed good enough. After working with the Schmid Group from Freudenstadt (and with further funding), the SCHOTT team optimized the cell’s surface with Schmid’s production-established selective emitter technology and their own PERC (Passsivated Emitter and Rear Contacts) technology. With these two solutions, solar efficiency was increased to over 20%. Their results were confirmed by the Fraunhofer ISE in Freiburg, another research institute, who provided an independent measurement.

http://www.zeitnews.org/e(...)cell-efficiency.html
"An educated citizenry is a vital requisite for our survival as a free people."
  dinsdag 30 augustus 2011 @ 12:00:29 #90
45206 Pietverdriet
Ik wou dat ik een ijsbeer was.
pi_101365277
Ik hoor al 20 jaar zo niet langer over foliezonnecellen en geprinte zonnecellen
In Baden-Badener Badeseen kann man Baden-Badener baden sehen.
pi_101399276
quote:
0s.gif Op dinsdag 30 augustus 2011 12:00 schreef Pietverdriet het volgende:
Ik hoor al 20 jaar zo niet langer over foliezonnecellen en geprinte zonnecellen
En nu zijn we 20 jaar verder en begint theorie de praktijk te worden, met name door nanotechnologie.
"An educated citizenry is a vital requisite for our survival as a free people."
pi_101399585
quote:
0s.gif Op woensdag 31 augustus 2011 03:10 schreef Probably_on_pcp het volgende:

[..]

En nu zijn we 20 jaar verder en begint theorie de praktijk te worden, met name door nanotechnologie.
Het is wachten totdat de grote binnenwietkwekers dit gaan toepassen.
pi_102348927
Solar Power Costs Dropping Dramatically. 11% in 6 Months.

No wonder corporations like Wal-Mart are going big with their solar plans, even Fox is promoting solar technology (sort of), and conservative friends of oil and coal are stepping up their anti-clean energy efforts. Solar is dropping dramatically in price, and it is beginning to look like a serious competitor to the status quo of energy production.

We've already seen promising signs that solar could be cheaper than coal in parts of Europe by 2013, but predictions are only worth so much. What is perhaps more exciting is that the installed cost—meaning the combination of the hardware costs, and the installation costs—of solar power have dropped consistently over the last few years. And they've done so at a time when cash incentives from states and utilities have declined steadily since their peak in 2002.

The news comes from a report on solar energy costs from the Lawrence Berkeley National Laboratory of the Department of Energy. Renewable Energy World has more on the exciting cost reductions that we are seeing in solar, as well as some of the more nuanced details around varying costs:

The study also highlights differences in installed costs by region and by system size and installation type. Across states, for example, the average cost of PV systems installed in 2010 that were less than 10 kW ranged from $6.30/W to $8.40/W depending on the state. The report also found that residential PV systems installed on new homes had significantly lower average installed costs than did those installed as retrofits to existing homes.
With ferocious cost reductions still possible through technological innovation, better business practices, and decreased red tape, and with improved energy storage making the intermittent supply issue less important, a clean-energy powered future is looking decidedly more plausible.

http://www.zeitnews.org/e(...)-11-in-6-months.html
"An educated citizenry is a vital requisite for our survival as a free people."
  woensdag 12 oktober 2011 @ 12:09:23 #94
134009 Killaht
Words of Wisdom
pi_102992814
Efficiëntere zonnecel in zicht
Laatste update: 11 oktober 2011 12:32 info

AMSTERDAM - Een team van Nederlandse en Tsjechische onderzoekers heeft silicium nanokristallen gemaakt die het rendement van zonnecellen flink kunnen gaan verhogen.

De onderzoekers van onder meer de Universiteit van Amsterdam schrijven over de ontdekking in een online publicatie in Nature Nanotechnology.
Standaard zonnecellen bestaan uit silicium, waarin onder invloed van licht een elektrische stroom gaat lopen. Het gangbare rendement van die zonnecellen is 15 tot 20 procent.

In tegenstelling tot het silicium dat in gangbare zonnecellen wordt gebruikt kunnen de silicium nanokristallen, een miljoen keer kleiner dan een zandkorrel, dankzij hun structuur het licht efficiënter omzetten.

Honderd procent
De onderzoekers bereikten in hun experiment een rendement van bijna 100 procent. Ze hebben nog geen daadwerkelijke zonnecellen gemaakt. Ze beschenen de nanokristallen en maten hoeveel lichtdeeltjes ze vervolgens weer uitzonden.

Verrassend genoeg ging de efficiëntie van deze kristallen bij energierijker licht juist omhoog, standaard zonnecellen werken hier juist minder effectief.

Uit vervolgexperimenten moet blijken of het rendement ook zo hoog blijft als het licht moet worden omgezet in elektriciteit. Dat zou de weg vrijmaken voor de productie van veel efficiëntere zonnecellen.

http://www.nu.nl/wetensch(...)nnecel-in-zicht.html
"Strange times are these in which we live
when old and young are taught in falsehoods school.
And the one man that dares to tell the truth is called at once a lunatic and fool"
  woensdag 12 oktober 2011 @ 12:21:05 #95
19440 Maanvis
Centuries in a lifetime
pi_102993156
... en vervolgens horen we niets meer van die vervolgexperimenten. zo gaat dat altijd :D
Trots lid van het 👿 Duivelse Viertal 👿
Een gedicht over Maanvis
Het ONZ / [KAMT] Kennis- en Adviescentrum Maanvis Topics , voor al je vragen over mijn topiques!
  woensdag 12 oktober 2011 @ 14:15:53 #96
45206 Pietverdriet
Ik wou dat ik een ijsbeer was.
pi_102996756
quote:
0s.gif Op woensdag 12 oktober 2011 12:09 schreef Killaht het volgende:
Efficiëntere zonnecel in zicht
Laatste update: 11 oktober 2011 12:32 info

AMSTERDAM - Een team van Nederlandse en Tsjechische onderzoekers heeft silicium nanokristallen gemaakt die het rendement van zonnecellen flink kunnen gaan verhogen.

De onderzoekers van onder meer de Universiteit van Amsterdam schrijven over de ontdekking in een online publicatie in Nature Nanotechnology.
Standaard zonnecellen bestaan uit silicium, waarin onder invloed van licht een elektrische stroom gaat lopen. Het gangbare rendement van die zonnecellen is 15 tot 20 procent.

In tegenstelling tot het silicium dat in gangbare zonnecellen wordt gebruikt kunnen de silicium nanokristallen, een miljoen keer kleiner dan een zandkorrel, dankzij hun structuur het licht efficiënter omzetten.

Honderd procent
De onderzoekers bereikten in hun experiment een rendement van bijna 100 procent. Ze hebben nog geen daadwerkelijke zonnecellen gemaakt. Ze beschenen de nanokristallen en maten hoeveel lichtdeeltjes ze vervolgens weer uitzonden.

Verrassend genoeg ging de efficiëntie van deze kristallen bij energierijker licht juist omhoog, standaard zonnecellen werken hier juist minder effectief.

Uit vervolgexperimenten moet blijken of het rendement ook zo hoog blijft als het licht moet worden omgezet in elektriciteit. Dat zou de weg vrijmaken voor de productie van veel efficiëntere zonnecellen.

http://www.nu.nl/wetensch(...)nnecel-in-zicht.html
Als ik het goed begrijp is het dus erg zwart
In Baden-Badener Badeseen kann man Baden-Badener baden sehen.
  woensdag 12 oktober 2011 @ 14:24:46 #97
134009 Killaht
Words of Wisdom
pi_102997070
quote:
0s.gif Op woensdag 12 oktober 2011 14:15 schreef Pietverdriet het volgende:

[..]

Als ik het goed begrijp is het dus erg zwart
Ja ze moeten dus het gaan vervolgen door de energie om te zetten in elektriciteit.
"Strange times are these in which we live
when old and young are taught in falsehoods school.
And the one man that dares to tell the truth is called at once a lunatic and fool"
pi_103005383
quote:
0s.gif Op woensdag 12 oktober 2011 12:21 schreef Maanvis het volgende:
... en vervolgens horen we niets meer van die vervolgexperimenten. zo gaat dat altijd :D
Fout. Over tien jaar is zonne-energie al lang en breed bezig met de verovering van de wereld en over 20 jaar zul je veel van deze vervolgexperimenten overal toegepast zien.
"An educated citizenry is a vital requisite for our survival as a free people."
pi_103005821
quote:
0s.gif Op woensdag 12 oktober 2011 18:08 schreef Probably_on_pcp het volgende:

[..]

Fout. Over tien jaar is zonne-energie al lang en breed bezig met de verovering van de wereld en over 20 jaar zul je veel van deze vervolgexperimenten overal toegepast zien.
Het afgelopen jaar zijn de prijzen van zonnepanelen al enorm gekeldert.
Voor consumenten met een juiste dakorrientatie begint zonne-energie nu echt interessant te worden.
pi_103345300
Paul Rosenmöller en het land van Obama

Ook Californië heeft geleden onder de economische crisis: de staat is failliet. Toch is er hier nieuwe hoop. Men werkt aan technische vernieuwing die moet leiden tot een duurzame, groene economie.

http://beta.uitzendinggem(...)nie-zonnige-toekomst

Interessant feitje: De zonne-energie sector is vorig jaar met 100% gegroeid en dat ten tijde van de ergste economische crisis in 80 jaar.
"An educated citizenry is a vital requisite for our survival as a free people."
abonnement Unibet Coolblue
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')