Klopt jaquote:Op dinsdag 18 december 2012 22:14 schreef twaalf het volgende:
Zo nu en dan is dat wel geinig om te zien in dit topic... staat er in de vraag 'los op met inklemmen' --> nee dat is flauwekul, zo gaan we het doen. Staat er in de vraag één klein detail verkeerd opgeschreven --> nee de vraag klopt niet en ik los hem ook niet op voor je.
Ik ben het er inderdaad mee eens dat de huidige schoolboeken gebrekkig zijn qua voorbeelden. Toch werkt het didactisch denk ik beter als je het eerst aan de leerling over laat om te laten zien wat hij wel en niet snapt aan de vraag. Dan geef je een hint. En als het een rommeltje wordt dan geef je eventueel een complete uitwerking. Op die manier is het wat interactiever, en gaat de oplossing denk ik ook wat minder snel over het hoofd van de leerling heen.quote:Op dinsdag 18 december 2012 22:19 schreef Riparius het volgende:
[..]
Tja, je zult ongetwijfeld hebben gemerkt dat ik nogal eens compete uitwerkingen of afleidingen post, en dat doe ik niet zonder reden, ik hoop namelijk dat de vragenstellers, maar mogelijk ook andere meelezers die het nodig hebben, daar iets van opsteken. Een helder uitgewerkt vraagstuk kan dienen als model om te imiteren en zo soortgelijke vraagstukken zelf te leren oplossen. In oudere schoolboeken zie je dan ook dat alle stof compleet wordt uitgelegd en dat werkt het beste. Maar omdat dat in de huidige schoolboeken niet niet meer gebeurt en er kennelijk ook geen les meer wordt gegeven krijg je mensen die het zelfs aan de meest basale vaardigheden ontbreekt en die ook niet in staat zijn om een uitwerking helder en correct op te schrijven, en dat is niet goed.
Dat doe ik ook wel, als ik er zin in heb en er tijd voor heb, maar dan zie je - helaas - toch vrij vaak dat je echt iedere stap er uit moet trekken en dan heb je al snel een half dozijn posts over iets wat in pakweg vijf regeltjes is op te schrijven. En dan heb je soms ook nog mensen die het spelletje gewoon niet mee willen spelen, maar die alleen een kant en klare oplossing van 'de som' willen hebben (ook al begrijpen ze die misschien niet eens) en die grof worden als ze merken dat ik ze zelf de oplossing wil laten vinden (ja, ik heb voorbeelden daarvan hier op FOK). Nu, ik zit er niet op te wachten om me te laten schofferen, dus dat is al een voldoende reden voor mij om niet te snel te beginnen met het geven van een hint als ik de indruk heb dat dat toch paarlen voor de zwijnen is.quote:Op dinsdag 18 december 2012 22:33 schreef thenxero het volgende:
[..]
Klopt ja(maar ook wel begrijpelijk soms)
[..]
Ik ben het er inderdaad mee eens dat de huidige schoolboeken gebrekkig zijn qua voorbeelden. Toch werkt het didactisch denk ik beter als je het eerst aan de leerling over laat om te laten zien wat hij wel en niet snapt aan de vraag. Dan geef je een hint. En als het een rommeltje wordt dan geef je eventueel een complete uitwerking. Op die manier is het wat interactiever, en gaat de oplossing denk ik ook wat minder snel over het hoofd van de leerling heen.
Ik denk dat menigeen (en ikzelf ook toen ik nog in de opleiding zat) jouw hulp erg waardeert. Ik ben er destijds stukken verder meegekomen in de complexe functietheorie, projectieve meetkunde en grafentheorie.quote:Op dinsdag 18 december 2012 22:55 schreef Riparius het volgende:
[..]
Dat doe ik ook wel, als ik er zin in heb en er tijd voor heb, maar dan zie je - helaas - toch vrij vaak dat je echt iedere stap er uit moet trekken en dan heb je al snel een half dozijn posts over iets wat in pakweg vijf regeltjes is op te schrijven. En dan heb je soms ook nog mensen die het spelletje gewoon niet mee willen spelen, maar die alleen een kant en klare oplossing van 'de som' willen hebben (ook al begrijpen ze die misschien niet eens) en die grof worden als ze merken dat ik ze zelf de oplossing wil laten vinden (ja, ik heb voorbeelden daarvan hier op FOK). Nu, ik zit er niet op te wachten om me te laten schofferen, dus dat is al een voldoende reden voor mij om niet te snel te beginnen met het geven van een hint als ik de indruk heb dat dat toch paarlen voor de zwijnen is.
Dat staat ook buiten kijf.quote:Op dinsdag 18 december 2012 23:02 schreef Borizzz het volgende:
[..]
Ik denk dat menigeen (en ikzelf ook toen ik nog in de opleiding zat) jouw hulp erg waardeert. Ik ben er destijds stukken verder meegekomen in de complexe functietheorie, projectieve meetkunde en grafentheorie.
Maar dat mag ook wel eens gezegd worden als ik lees dat er ook users zijn die hier totaal verkeerd mee om gaan.quote:
Zeker, maar jij deed een wiskunde opleiding en was dus, naar ik aanneem, ook goed gemotiveerd. Ik doelde meer op mensen die niets met wiskunde hebben maar gewoon willen dat iemand anders even hun huiswerk maakt of die 's avonds laat (en bij voorkeur 's zondags) aan komen zetten met een opgave die de volgende ochtend ingeleverd moet worden of die de volgende ochtend een proefwerk hebben waar ze nog niets aan gedaan hebben. Meestal - maar niet altijd - is wel goed in te schatten of het zin heeft tijd in iemand te steken in de vorm van een uitgebreide uitleg of een dialoog over een vraagstuk.quote:Op dinsdag 18 december 2012 23:02 schreef Borizzz het volgende:
[..]
Ik denk dat menigeen (en ikzelf ook toen ik nog in de opleiding zat) jouw hulp erg waardeert. Ik ben er destijds stukken verder meegekomen in de complexe functietheorie, projectieve meetkunde en grafentheorie.
Ik zie het nu. Ik had moeten inzien dat de coefficieinten van f niet veranderen. Aangezien K een deelverzameling van E is, geldt automatisch dat f een polynoom over E is.quote:Op maandag 17 december 2012 20:17 schreef Mathemaat het volgende:
[..]
Bekijk f=(x^2+1)(x^2-2) met coëfficiënten in. De splittingfield is dan
. De subfields, zodat
bevat is, is dan
,
en
. Nu is het makkelijk inzien dat
de splittingfield van
,
en
is.
Een K-monomorfisme stuurt alle elementen uit K naar K en de uitbreidingselementen worden injectief naar de uitbreidingselementen gestuurd. Dus phi(E) is dan gewoon E en phi(E_1) is dan of E of E_1 of E_2 of, als ik de definitie van een K-monomorfisme goed begrepen heb.
Is dat niet jammer, om maar telkens voorgekauwde oplossingen te geven aan iedereen omdat sommige het verknald hebben bij je? Je zou, wanneer ze kwaad worden, ook gewoon kunnen negeren. Je hoeft ze uiteraard niet te helpen.quote:Op dinsdag 18 december 2012 22:55 schreef Riparius het volgende:
[..]
Dat doe ik ook wel, als ik er zin in heb en er tijd voor heb, maar dan zie je - helaas - toch vrij vaak dat je echt iedere stap er uit moet trekken en dan heb je al snel een half dozijn posts over iets wat in pakweg vijf regeltjes is op te schrijven. En dan heb je soms ook nog mensen die het spelletje gewoon niet mee willen spelen, maar die alleen een kant en klare oplossing van 'de som' willen hebben (ook al begrijpen ze die misschien niet eens) en die grof worden als ze merken dat ik ze zelf de oplossing wil laten vinden (ja, ik heb voorbeelden daarvan hier op FOK). Nu, ik zit er niet op te wachten om me te laten schofferen, dus dat is al een voldoende reden voor mij om niet te snel te beginnen met het geven van een hint als ik de indruk heb dat dat toch paarlen voor de zwijnen is.
Eensquote:Op woensdag 19 december 2012 07:08 schreef Amoeba het volgende:
[..]
Is dat niet jammer, om maar telkens voorgekauwde oplossingen te geven aan iedereen omdat sommige het verknald hebben bij je? Je zou, wanneer ze kwaad worden, ook gewoon kunnen negeren. Je hoeft ze uiteraard niet te helpen.
Het punt is dat ik antwoorden niet alleen post voor de vragenstellers maar dat ik hoop of verwacht dat anderen daar ook wat aan hebben. Deze topicreeks heeft in verhouding tot het aantal (verschillende) posters vrij veel views, zodat je moet aannemen dat er ook veel passieve meelezers zijn die deze topicreeks kennelijk de moeite waard vinden. En daarnaast is het zo dat het meestal minder tijd kost om direct een oplossing in een paar regels netjes op te schrijven dan om alleen een hint te geven en vervolgens te gaan zitten afwachten wat de vragensteller daar mee doet en daar dan weer op te moeten reageren. Ik maak in principe in eerste instantie verder geen onderscheid tussen gekende onsympathieke en sympathieke posters, alleen de vraag is bepalend.quote:Op woensdag 19 december 2012 07:08 schreef Amoeba het volgende:
[..]
Is dat niet jammer, om maar telkens voorgekauwde oplossingen te geven aan iedereen omdat sommige het verknald hebben bij je? Je zou, wanneer ze kwaad worden, ook gewoon kunnen negeren. Je hoeft ze uiteraard niet te helpen.
Stel je had maar 2 of 3 wedstrijden. Hoeveel zou het er dan zijn?quote:Op woensdag 19 december 2012 17:51 schreef HenkXL het volgende:
Ik heb een vraag die wellicht zeer makkelijk is voor veel mensen. Maar ik weet het dus niet zeker en aangezien ik al jaren van de middelbare school ben is het nogal weggezakt![]()
Stel je hebt 12 wedstrijden waarbij de uitkomst alleen winst en verlies kan zijn ( dus niet gelijk ).
Hoeveel verschillende combinaties zijn er dan mogelijk? Kan je dan de NcR formule ( 12C2 ) gebruiken wat dus 66 combinaties betekent? Of moet het op een andere manier?
Alvast bedankt iig.
Je vraag is te onduidelijk om te kunnen beantwoorden. Als je een soort totoformulier hebt, maar dan eentje met 12 wedstrijden en slechts twee kolommen, dan zijn er 212 = 4096 mogelijkheden voor de uitkomst van de 12 wedstrijden.quote:Op woensdag 19 december 2012 17:51 schreef HenkXL het volgende:
Ik heb een vraag die wellicht zeer makkelijk is voor veel mensen. Maar ik weet het dus niet zeker en aangezien ik al jaren van de middelbare school ben is het nogal weggezakt![]()
Stel je hebt 12 wedstrijden waarbij de uitkomst alleen winst en verlies kan zijn ( dus niet gelijk ).
Hoeveel verschillende combinaties zijn er dan mogelijk? Kan je dan de NcR formule ( 12C2 ) gebruiken wat dus 66 combinaties betekent? Of moet het op een andere manier?
Alvast bedankt iig.
Dank voor de reacties.quote:Op woensdag 19 december 2012 18:05 schreef Amoeba het volgende:
Inderdaad is een beetje de vraag of TS over 12 identieke of unieke wedstrijden spreekt.
Inderdaad. Snap je ook waarom dit zo is?quote:Op woensdag 19 december 2012 18:09 schreef HenkXL het volgende:
[..]
Dank voor de reacties.
Ik doelde op 12 unieke wedstrijden met 2 uitkomst mogelijkheden. Dan zou ik de ''formule'' van Riparius moeten gebruiken, wat dus resulteert in 4096 mogelijkheden. Dat klinkt eigenlijk ook wel wat logischer.
Dankje hiervoor :-) Ik post niet zo heel vaak maar ik sla al jouw (uitgebreide) antwoorden (op vragen van anderen) op!quote:Op woensdag 19 december 2012 17:35 schreef Riparius het volgende:
[..]
Het punt is dat ik antwoorden niet alleen post voor de vragenstellers maar dat ik hoop of verwacht dat anderen daar ook wat aan hebben. Deze topicreeks heeft in verhouding tot het aantal (verschillende) posters vrij veel views, zodat je moet aannemen dat er ook veel passieve meelezers zijn die deze topicreeks kennelijk de moeite waard vinden. En daarnaast is het zo dat het meestal minder tijd kost om direct een oplossing in een paar regels netjes op te schrijven dan om alleen een hint te geven en vervolgens te gaan zitten wachten wat de vragensteller daar mee doet en daar dan weer op te moeten reageren. Ik maak in principe in eerste instantie verder geen onderscheid tussen gekende onsympathieke en sympathieke posters, alleen de vraag is bepalend.
Dank voor je reactie. Lees ook even mijn tip om posts optimaal leesbaar op te slaan en af te drukken.quote:Op woensdag 19 december 2012 18:30 schreef flopsies het volgende:
[..]
Dankje hiervoor :-) Ik post niet zo heel vaak maar ik sla al jouw (uitgebreide) antwoorden (op vragen van anderen) op!
Bij ons op school hebben ze echt zo'n versie van Word waarbij al die dingen niet werken. Het symbool voor een hoek wordt in een apart lettertype weergegeven, anders is het een vierkantje. Het leuke is dan dat 84pts dan overeenkomt met 12pts in Times New Roman. Om even ruwweg aan te geven dat je lay-out dan wel verknald is.quote:Op woensdag 19 december 2012 18:36 schreef Riparius het volgende:
[..]
Dank voor je reactie. Lees ook even mijn tip om posts optimaal leesbaar op te slaan en af te drukken.
Je hebt toch zelf wel een computer met Microsoft Word (of anders Open Office, dat werkt ook)? Het teken ∠ (U+2220 ANGLE) zit inderdaad niet in Times New Roman of in Minion Pro, maar bijvoorbeeld wel in het (kosteloze) Linux Libertine dat kwalitatief ook heel goed is. Mixen van fonts is ook geen probleem, als je eerst alles in Linux Libertine zet en daarna alles weer terug in Minion Pro, dan blijven de tekens zoals ∠ die ontbreken in Minion Pro gewoon in Linux Libertine staan.quote:Op woensdag 19 december 2012 19:10 schreef Amoeba het volgende:
[..]
Bij ons op school hebben ze echt zo'n versie van Word waarbij al die dingen niet werken. Het symbool voor een hoek wordt in een apart lettertype weergegeven, anders is het een vierkantje. Het leuke is dan dat 84pts dan overeenkomt met 12pts in Times New Roman. Om even ruwweg aan te geven dat je lay-out dan wel verknald is.
Dat zijn inderdaad allemaal courante termen, maar ik weet natuurlijk niet of je ze in je tekst ook correct gebruikt.quote:Mijn docent vroeg adhv mijn concept PWS iets over 3 termen welke ik gebruikte, oblate en prolate sferoïden en sfeer als (wiskundig) synoniem voor het oppervlak van een bol. Dit is toch allemaal correct? Oblaat en prolaat geeft de vorm van de sferoïde aan, in een gefixeerd xyz-stelsel.
Ik ben in het bezit van een computer ja, ik heb 't ding zelf in elkaar gestoken voor 3500 euro, ongeveer. 3 Samsung 2450BX op 2x de GTX580, om even een greep in de specificaties te doen.quote:Op woensdag 19 december 2012 19:27 schreef Riparius het volgende:
[..]
Je hebt toch zelf wel een computer met Microsoft Word (of anders Open Office, dat werkt ook)? Het teken ∠ (U+2220 ANGLE) zit inderdaad niet in Times New Roman of in Minion Pro, maar bijvoorbeeld wel in het (kosteloze) Linux Libertine dat kwalitatief ook heel goed is. Mixen van fonts is ook geen probleem, als je eerst alles in Linux Libertine zet en daarna alles weer terug in Minion Pro, dan blijven de tekens zoals ∠ die ontbreken in Minion Pro gewoon in Linux Libertine staan.
[..]
Dat zijn inderdaad allemaal courante termen, maar ik weet natuurlijk niet of je ze in je tekst ook correct gebruikt.
De specs zeggen natuurlijk niets over de mogelijkheid om met Unicode te werken, dat is bij Windows al standaard vanaf XP geïntroduceerd eind 2001, en Linux is ook al heel lang op Unicode gebaseerd. Alleen duurt het kennelijk vele jaren voordat dat soort dingen een beetje doordringen tot sommige mensen. Anno 2012 zijn er nog hele volksstammen die blijven pielen met MS-DOS codes uit de jaren '80 van de vorige eeuw.quote:Op woensdag 19 december 2012 20:30 schreef Amoeba het volgende:
[..]
Ik ben in het bezit van een computer ja, ik heb 't ding zelf in elkaar gestoken voor 3500 euro, ongeveer. 3 Samsung 2450BX op 2x de GTX580, om even een greep in de specificaties te doen.
Dat lijkt me correct, hoewel sfeer dacht ik in het Nederlands niet zo'n gebruikelijk woord is. In een document waarnaar je eerder linkte wordt gesproken van de projectie van een bol of de aardbol of het aardoppervlak op een plat vlak, het woord sfeer komt in dat hele document niet voor.quote:Ik geloof wel dat ik ze correct gebruik. Ik spreek over de projectie van een sfeer op een (tweedimensionaal) vlak.
Dit was ook zijn (principiële) bezwaar; het is geen gebruikelijk woord. Echter vond hij zinnen zoals "Echter is er genoeg materie in de diversiteit der cilindrische projecties om een vullend werkstuk te creëeren." onzinnig, te moeilijk en vooral niet doen. Even een opsomming van mijn zinnen waarin ik 'sfeer' gebruik:quote:Op woensdag 19 december 2012 21:13 schreef Riparius het volgende:
[..]
De specs zeggen natuurlijk niets over de mogelijkheid om met Unicode te werken, dat is bij Windows al standaard vanaf XP geïntroduceerd eind 2001, en Linux is ook al heel lang op Unicode gebaseerd. Alleen duurt het kennelijk vele jaren voordat dat soort dingen een beetje doordringen tot sommige mensen. Anno 2012 zijn er nog hele volksstammen die blijven pielen met MS-DOS codes uit de jaren '80 van de vorige eeuw.
[..]
Dat lijkt me correct, hoewel sfeer dacht ik in het Nederlands niet zo'n gebruikelijk woord is. In een document waarnaar je eerder linkte wordt gesproken van de projectie van een bol of de aardbol of het aardoppervlak op een plat vlak, het woord sfeer komt in dat hele document niet voor.
Ja, dat is ook mijn bezwaar. Je kunt je het beste houden aan de gebruikelijke terminologie in serieuze (wetenschappelijke) publicaties in het Nederlands over jouw specifieke onderwerp. Ik heb zelf de indruk dat het woord sfeer in het Nederlands vooral in een strict wiskundige contekst wordt gebruikt, zoals in het begrip Riemann-sfeer.quote:Op woensdag 19 december 2012 21:29 schreef Amoeba het volgende:
[..]
Dit was ook zijn (principiële) bezwaar; het is geen gebruikelijk woord.
Deze zin loopt niet lekker, is niet echt goed Nederlands, en klinkt ook wat te hoogdravend. Maak er iets van als de literatuur over de verschillende cilinderprojecties biedt voldoende materiaal voor een uitgebreid werkstuk.quote:Echter vond hij zinnen zoals "Echter is er genoeg materie in de diversiteit der cilindrische projecties om een vullend werkstuk te creëeren." onzinnig, te moeilijk en vooral niet doen.
Ik wil je werkstuk t.z.t. best doornemen, maar dat kan dan pas ruim na de feestdagen.quote:Even een opsomming van mijn zinnen waarin ik 'sfeer' gebruik:
Ik wil echter maar een klein deel van dit onderwerp behandelen, namelijk de projecties van een sfeer op een tweedimensionaal vlak.
Nu behandel ik enkel de situaties waarvoor geldt dat het te projecteren oppervlak een sfeer betreft.
Beetje dubbelop, maar dit is beperking 1.
De cilindrische projectie beschrijft een methode om de sfeer af te beelden op een plat vlak met behulp van de cilinder.
Deze projecties zijn geen directe projecties van de sfeer op een mantel om de bol.
Op de kaart worden ook de grootcirkels, op een sfeer aangeduid met meridianen, als rechte lijnen weergegeven. (Deze zin ga ik wijzigen in het aardoppervlak, immers meridianen komen niet per definitie voor op een sfeer maar juist op het aardoppervlak oid..)
Stel dat we een willekeurig punt op de sfeer nemen,
Ik zou je natuurlijk een keer het document kunnen sturen, dat je het een keer doorleest wanneer je zin hebt. Ik moet eerst nog legio wijzingen en addities doorvoeren, dus nu nog niet. Ik stelde je hulp met de Mercatorprojectie zeer op prijs, dus misschien dat je nogmaals wat tijd voor me vrij kunt maken?
Volgens deze URL: http://nl.wikipedia.org/wiki/Sfeer_(wiskunde) is aanname nog niet eens zo slecht. Je spreekt van een strikt wiskundige definitie, op zich wel een aardigheidje dat mijn werkstuk ook over een wiskundig onderwerp gaat. Nu even zonder satire, raad je het me aan om het te vervangen door boloppervlak, of iets in die trend? Of is het correct genoeg om te laten staan, afgezien van het dagelijkse gebruik?quote:Op woensdag 19 december 2012 21:48 schreef Riparius het volgende:
[..]
Ja, dat is ook mijn bezwaar. Je kunt je het beste houden aan de gebruikelijke terminologie in serieuze (wetenschappelijke) publicaties in het Nederlands over jouw specifieke onderwerp. Ik heb zelf de indruk dat het woord sfeer in het Nederlands vooral in een strict wiskundige contekst wordt gebruikt, zoals in het begrip Riemann-sfeer.
[..]
Deze zin loopt niet lekker, is niet echt goed Nederlands, en klinkt ook wat te hoogdravend. Maak er iets van als de literatuur over de verschillende cilinderprojecties biedt voldoende materiaal voor een uitgebreid werkstuk.
[..]
Ik wil je werkstuk t.z.t. best doornemen, maar dat kan dan pas ruim na de feestdagen.
Op grond van het artikel waarnaar je linkte en artikelen in de Nederlandse Wikipedia had ik de indruk dat het woord sfeer niet zo gebruikelijk is in Nederlandstalige publicaties over cartografie. Dat het een courante wiskundige term is weet ik ook wel, maar zoals gezegd kun je het beste aansluiting zoeken bij wat in de literatuur over jouw specifieke onderwerp gebruikelijk is, en dat zul je toch echt zelf na moeten gaan, ik ken de literatuur over cilindrische kaartprojecties niet.quote:Op woensdag 19 december 2012 22:05 schreef Amoeba het volgende:
[..]
Volgens deze URL: http://nl.wikipedia.org/wiki/Sfeer_(wiskunde) is aanname nog niet eens zo slecht. Je spreekt van een strikt wiskundige definitie, op zich wel een aardigheidje dat mijn werkstuk ook over een wiskundig onderwerp gaat. Nu even zonder satire, raad je het me aan om het te vervangen door boloppervlak, of iets in die trend? Of is het correct genoeg om te laten staan, afgezien van het dagelijkse gebruik?
- materie in de diversiteit kun je zo niet laten staan, dat zou diversiteit in de materie moeten zijn, maar dan nog is het gebruik van het woord materie hier niet correct. Het woord materie wordt gebruikt in de fysica, en ook wel om het geheel aan te duiden van een bepaald onderwerp, zoals in: dit is een moeilijke materie. Materie duidt een niet-telbare kwantiteit aan, bij discrete (telbare) kwantiteiten gebruik je het woord materiaal. Je kunt bijvoorbeeld niet zeggen het NIOD heeft veel materie over de Tweede Wereldoorlog, dat moet zijn veel materiaal (of: veel documentatie).quote:Ik maak een aantekening. Ik houd van hoogdravende zinnen, maar ik zie zo even niet in wat er precies (taalkundig) niet goed aan is. Kun je dit nader toelichten?
Dat lijkt me niet moeilijk, geografische coördinaten van plaatsen op aarde zijn gemakkelijk op te zoeken via Google Maps.quote:Inderdaad, na de feestdagen pas. Het doel is om mijn werkstuk medio februari af te hebben, met mijn begeleidend docent heb ik afgesproken dat ik eind januari een conceptversie inlever, en ik loop ruim op schema. Onze laatste ontmoeting was dinsdag jongstleden, met de toen doorgenomen stof vond hij dat ik me op 80% bevond met voldoende vwo-diepgang.
Echter sprak hij ook over iets 'persoonlijks', vooral bij de stereografische projectie. Is het mogelijk dat ik de GPS coördinaten van (bijvoorbeeld) Eindhoven (E), Amsterdam(A) en Venlo (V) opzoek, uit deze coördinaten de hoek AEV afleidt, en dit bijvoorbeeld met een (Mercatorkaart) van Nederland bevestig?
Daar mag je de komende tijd eens over gaan nadenken. Hiervoor heb je boldriehoeksmeting nodig. Op de site van het Nederlands schoolmuseum zijn voldoende boekjes te vinden over boldriehoeksmeting uit de tijd dat dat nog een schoolvak was.quote:Ofwel, de hoek die deze 3 plaatsen met elkaar maken op het aardoppervlak is dus gelijk aan de hoek die loxodromen met elkaar maken, als ik het goed begrepen heb. Maar hoe haal ik deze hoek eruit?
Ah zo, en daarom vraag je mij even om het op te lossen?quote:Zo'n 'toepassing' moest ik gebruiken voor mijn presentatie/werkstuk om te laten zien dat mijn werkstuk authentiek is.
Dit is geen hoogdravende zin hoor. Een zin is niet hoogdravend als de zin niet prettig leest. Schrijf je je werkstuk om gelezen te worden of niet?quote:Op woensdag 19 december 2012 22:05 schreef Amoeba het volgende:
[..]
Ik maak een aantekening. Ik houd van hoogdravende zinnen, maar ik zie zo even niet in wat er precies (taalkundig) niet goed aan is. Kun je dit nader toelichten?
Ah, op deze manier. Je had het over de hoek Amsterdam - Eindhoven - Venlo op het aardoppervlak, en dan denk ik toch automatisch aan een boldriehoek. Maar de zijden hiervan zijn inderdaad geen loxodromen. Als je ∠AEV op je kaartprojectie wil berekenen, dan bereken je eerst de cartesische coördinaten A(x1;y1), E(x2;y2) en V(x3;y3) van de drie punten op je kaart en dan kun je ∠AEV op de kaart berekenen. Bij een Mercatorprojectie is dit dan inderdaad de hoek tussen de loxodromen EA en EV.quote:Op woensdag 19 december 2012 23:37 schreef Amoeba het volgende:
Boldriehoeksmeting, staat genoteerd.
Neen, niet direct oplossen, ik vroeg me af of dit mogelijk was. Prima opgelost zo
En er rijst direct een vraag op. Bij sferische trigonometrie worden lijnstukken vervangen door geodeten. Maar op mijn kaart zijn juist de loxodromen rechte lijnen, als ik dan de hoek op de kaart opmeet, moet die dan niet equivalent zijn aan de hoek de de loxodromen maken op de sfeer? Bij de bolmeetkunde gaat men juist met orthodromen werken, zo zegt het Wikipedia artikel.
Er staat slechts 1 vraag
Ik vroeg me af of het niet mogelijk was om dit andersom te doen, dus eerst de hoek die de loxodromen op het aardoppervlak met elkaar maken te berekenen met behulp van de bol, en dan een aha-momentje genereren door even heel intelligent met een Mercatorkaart aan te tonen dat dit juist is. Dat is wat mijn docent vroeg, althans. Het is natuurlijk ook gewoon 'goed' om eerst de Mercatorkaart hiervoor te gebruiken, en dan alsnog op basis van de bewezen conformiteit te stellen dat dit dan de hoek tussen loxodromen AE en EV moet zijn. Maar dan mis ik dat ziehiertada momentje waarmee ik in een klap de authenticiteit en de garantie op een goed cijfer veilig stel.quote:Op donderdag 20 december 2012 01:10 schreef Riparius het volgende:
[..]
Ah, op deze manier. Je had het over de hoek Amsterdam - Eindhoven - Venlo op het aardoppervlak, en dan denk ik toch automatisch aan een boldriehoek. Maar de zijden hiervan zijn inderdaad geen loxodromen. Als je ∠AEV op je kaartprojectie wil berekenen, dan bereken je eerst de cartesische coördinaten A(x1;y1), E(x2;y2) en V(x3;y3) van de drie punten op je kaart en dan kun je ∠AEV op de kaart berekenen. Bij een Mercatorprojectie is dit dan inderdaad de hoek tussen de loxodromen EA en EV.
Wat je hier doet klopt niet. Voor de orthografische cilinderprojectie van Lambert hebben we:quote:Op donderdag 20 december 2012 13:34 schreef Amoeba het volgende:
En ik zat even na te denken over het bewijs van de equivalentie van de orthografische cilinderprojectie van Lambert.
Uiteraard kunnen we hetzelfde ook meetkundig bewijzen, en het aardige is dat dat al heel lang geleden is gedaan door Archimedes. Hij bewees namelijk dat de oppervlakte van een bolsegment gelijk is aan de oppervlakte van de projectie van dat bolsegment (of: bolschijf) op een omgeschreven cilinder van de bol als de as van de omgeschreven cilinder loodrecht op de snijvlakken van het bolsegment staat. Een consequentie hiervan is dat de oppervlakte van de gehele bol dus ook gelijk is aan de manteloppervlakte van de omgeschreven cilinder. Heb je een bol met straal r, dan heeft de mantel van de omgeschreven cilinder een omtrek 2πr en een hoogte 2r, zodat de oppervlakte van de bol dus gelijk is aan 2πr∙2r = 4πr2.quote:Of is dit dan weer niet algebraïsch te bewijzen, maar juist meetkundig? Ik las ergens iets dat het eenvoudig was om aan te tonen dat een smalle ring tussen 2 parallellen dezelfde oppervlakte op de kaart heeft als op de bol. Maar dit klopt toch niet, aangezien deze ring toch veel groter wordt, en niet smaller?
Dit is veel minder eenvoudig dan je denkt, en omdat je al de mist ingaat met het berekenen van wat eenvoudige schaalfactoren denk ik dat je hier beter niet aan kunt beginnen. Ik heb wel een artikeltje voor je waar je eens naar zou kunnen kijken, maar de site van de MAA ligt momenteel plat, dus ik kan het artikel nu ook niet tevoorschijn toveren.quote:Op donderdag 20 december 2012 12:14 schreef Amoeba het volgende:
[..]
Ik vroeg me af of het niet mogelijk was om dit andersom te doen, dus eerst de hoek die de loxodromen op het aardoppervlak met elkaar maken te berekenen met behulp van de bol, en dan een aha-momentje genereren door even heel intelligent met een Mercatorkaart aan te tonen dat dit juist is. Dat is wat mijn docent vroeg, althans.
Ik begrijp het, maar je krijgt niets voor niets.quote:Het is natuurlijk ook gewoon 'goed' om eerst de Mercatorkaart hiervoor te gebruiken, en dan alsnog op basis van de bewezen conformiteit te stellen dat dit dan de hoek tussen loxodromen AE en EV moet zijn. Maar dan mis ik dat ziehiertada momentje waarmee ik in een klap de authenticiteit en de garantie op een goed cijfer veilig stel.
Als je dingen van mij overneemt kopieer je ook van internet. Had je daar al eens bij stilgestaan?quote:Met authenticiteit bedoel ik natuurlijk dat ik het niet doodleuk van internet gekopieerd heb, maar er zelf ook moeite in gestoken heb en dergelijke. En beter gezegd, dat ik het bovenal begrepen heb.
quote:Ik ga deze (na)middag beginnen aan het corrigeren van het werkstuk, heb nog flink wat kanttekeningen gekregen met kleine verbeterpuntjes, veelal taalkundig en wat gevraagde explicitering.
Dat was van Iblis. En nee, ik ben niet Iblis.quote:Op donderdag 20 december 2012 21:31 schreef Borizzz het volgende:
Riparius; had jij een (hele) tijd terug een mooie post met een bewijs van 1+1 gelijk is aan 2?
Daar staat me iets van bij namelijk.
Reken maar dat er vragen zijn waar ik geen antwoord op kan geven. Ik vind zelf dat ik maar betrekkelijk weinig wiskunde ken. En dat kan ook niet anders, want ik heb in een dictaat eens gelezen dat er veel meer wiskunde is dan in een mensenhoofd past. Vond ik wel een mooie gedachte.quote:Oh, en bestaan er eigenlijk wel wiskunde vragen waar je geen antwoord op hebt? Zijn er gebieden in de wiskunde waar je minder affiniteit mee hebt?
Ik bedoelde klakkeloos 1 op 1. Ik denk niet dat er van een vwo'er verwacht mag worden dat hij iets nieuws uitvindt, daar moet een promovendus zich maar mee bezighouden.quote:Op donderdag 20 december 2012 21:13 schreef Riparius het volgende:
[..]
Dit is veel minder eenvoudig dan je denkt, en omdat je al de mist ingaat met het berekenen van wat eenvoudige schaalfactoren denk ik dat je hier beter niet aan kunt beginnen. Ik heb wel een artikeltje voor je waar je eens naar zou kunnen kijken, maar de site van de MAA ligt momenteel plat, dus ik kan het artikel nu ook niet tevoorschijn toveren.
[..]
Ik begrijp het, maar je krijgt niets voor niets.
[..]
Als je dingen van mij overneemt kopieer je ook van internet. Had je daar al eens bij stilgestaan?
[..]
SPOILEROm spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt. Excuses, post gemist.Stel dat ik de 2 bovenste parallellen nabij de noordpool zou nemen, en de ring zou projecteren. Dan krijg je toch een omtrek (zie de rek op de orthografische projectie in horizontale richting) van 2piR? Dit terwijl de lengte van de parallel toch veel kleiner is, vanwege zijn geografische breedte.quote:Je idee dat de oppervlakte van een gebied op aarde tussen twee parallellen niet gelijk zou zijn aan de projectie daarvan op een omgeschreven cilinder met de as loodrecht op de vlakken van de parallellen klopt gewoon niet. Denk daar maar eens over na.
Daarom komt mij dit enigszins 'raar' voor.
En ik was al op de helft... En zo eenvoudig vind ik de afleiding van de verticale schaalfactor niet.Dit doet vrij weinig af aan een juist of onjuist antwoord Bram, sorry. Sterker nog, ik zou een 1/cos(x) = sec(x) zien als een vereenvoudiging, dus 'verplicht'. We laten x/x^2 toch ook niet staan wanneer we ook 1/x kunnen schrijven?quote:Op donderdag 20 december 2012 22:04 schreef Bram_van_Loon het volgende:
Van ... = 1/cos(x) = sec(x) zou ik gewoon ... = 1/cos(x) of ... = sec(x) maken.
[ Bericht 7% gewijzigd door #ANONIEM op 20-12-2012 22:28:27 ]
quote:Op donderdag 20 december 2012 21:31 schreef Borizzz het volgende:
Riparius; had jij een (hele) tijd terug een mooie post met een bewijs van 1+1 gelijk is aan 2?
Daar staat me iets van bij namelijk.
Oh, en bestaan er eigenlijk wel wiskunde vragen waar je geen antwoord op hebt? Zijn er gebieden in de wiskunde waar je minder affiniteit mee hebt?
quote:Op dinsdag 28 oktober 2008 22:20 schreef Iblis het volgende:
[..]
Neem de lege verzameling: {}. Definieer nu een recursieve relatie van een lijst waarbij we de opvolger van element k, zeg S(k), definiëren als S(k) = k ∪ {k}. Dan hebben we de volgende lijst: {}, {{}}, {{}, {{}} }, etc. Nu noemen we het eerste element 0. Het tweede 1, en het derde 2. Aldus construeren wij de natuurlijke getallen vanuit de lege verzameling. De symbolen gaan verder als 3, 4, 5, 6, 7, 8, 9, 10, maar dit is in feite arbitrair. Doch voor nu nemen we de gebruikelijke notatie aan.
Dan zijn er nog wat definities. Zij x een natuurlijk getal, en zijn y en z dit ook. Dan, x = x, x = y dan en slechts dan y = x, verder x = y en y = z, dan x = z en als laatste, als x een natuurlijk getal is en x = x', dan is x' ook een natuurlijk getal.
Voorts stipuleren we dat {} (noemen wij ook 0) een natuurlijk getal is, en dat S(k), waarbij k een natuurlijk getal is, ook een natuurlijk getal is. Verder nemen wij aan dat er geen k is zodanig dat S(k) = {}, en ook dat als S(x) = z, en S(y) = z, dat dan x = y. (Omgekeerd volgt natuurlijk direct uit de voorgaande axiomata).
Voor het gemak duiden we de verzameling van natuurlijke getallen aan met N, dan definiëren we + : N x N -> N, met als basisstap:
+(x, {}) = x (1)
En als recursie:
+(x, S(y)) = S(+(x, y)) (2)
Soms gebruiken we ook de infix-notatie en schrijven we derhalve x + y voor +(x, y).
Let op dat deze uiteenzetting niet helemaal formeel is, maar afdoende om het idee over te brengen.
Beschouw nu: 1 + 1, ofwel +({{}}, {{}}), dit voldoet niet aan (1), dus we moeten (2) toepassen, en dit zegt dat het gelijk is aan S(+({{}}, {})). De binnenste + kan nu weer nader beken worden, en deze voldoet wel aan (1). Dit geeft dat +({{}}, {}) gelijk is aan {{}}. Dat maakt dat de vergelijking vereenvoudigt tot S({{}}), wat per definitie van S gelijk is aan {{},{{}}}, of wel 2. QED.
Dit vanuit de set-theoretische constructie van de natuurlijke getallen, en de axiomata van Peano-Arithmetica. Een minstens zo elegant bewijs kan gegeven worden middels Church-numerals in de Lambda-calculus. Uiteindelijk komt het natuurlijk meer neer op een afspraak die wij maken hoe wij bepaalde verzamelingen (of lambda-functie-expressies) kort aanduiden met een cijfer, en de opvolgingsrelatie die wij daarin veronderstellen, dat volgt dat de som van 1 + 1 inderdaad gelijk is aan de opvolger van 1. Dit correspondeert redelijk met een discreet model van dingen in de werkelijkheid. Alhoewel je zou kunnen beargumenteren dat 1 druppel samen met 1 druppel weer één druppel is, en dat bovenstaande dit niet accuraat modelleert. Voor zulke vragen, in tegen stelling tot axiomatische afleidingen moet je denk ik in een WFL topic zijn, en je zou de Principia Mathematica er eens op na kunnen slaan.
Dat moet je nooit zeggen. Don't sell yourself short. Ik moest toen ik dit las meteen denken aan de ontdekking van de toen 10-jarige Penny Drastik. Tot voor kort werd gedacht dat de minimale zijde van een vierkant dat je kunt verdelen in 5 rechthoekige driehoeken waarvan de zijden pythagoreïsche tripletten vormen een lengte 9000 moest hebben, maar Penny dacht daar toch anders over en kwam op de proppen met maar liefst 12 kleinere vierkanten die zich zo laten verdelen. Ze denkt ook dat het kleinste zo te verdelen vierkant een zijde 1248 moet hebben, en tot nu toe heeft niemand haar bevindingen kunnen weerleggen. Hier kun je er meer over lezen. Ook goed leesvoer voor achterlijke FOKkers die anno 2012 nog beweren dat wiskunde niets is voor meisjes.quote:Op donderdag 20 december 2012 22:02 schreef Amoeba het volgende:
[..]
Ik bedoelde klakkeloos 1 op 1. Ik denk niet dat er van een vwo'er verwacht mag worden dat hij iets nieuws uitvindt, daar moet een promovendus zich maar mee bezighouden.
Je vergeet te bedenken dat het aardoppervlak niet parallel loopt aan de cilinder waarop je projecteert. Naarmate je dichter bij de polen komt, correspondeert met een vaste afstand in verticale richting op de projectie een steeds grotere afstand in verticale richting (langs een meridiaan) op het aardoppervlak.quote:Stel dat ik de 2 bovenste parallellen nabij de noordpool zou nemen, en de ring zou projecteren. Dan krijg je toch een omtrek (zie de rek op de orthografische projectie in horizontale richting) van 2piR? Dit terwijl de lengte van de parallel toch veel kleiner is, vanwege zijn geografische breedte.
De secans en cosecans worden tegenwoordig op het vasteland van Europa vrijwel niet meer gebruikt. In de VS (en in mindere mate in het Verenigd Koninkrijk) wel, en daar is een heel banale reden voor: meestal schrijft men daar sin-1x en cos-1x voor resp. arcsin x en arccos x, zodat de multiplicatieve inversen van sin x en cos x dus niet zo kunnen worden genoteerd en men daarom maar csc x en sec x handhaaft. Om dezelfde reden is de cotangens nog altijd 'populair' in de VS omdat men tan-1x schrijft voor arctan x. Uiteraard zou men er beter aan doen de misleidende notaties voor de inversen van de goniometrische functies (in 1813 geïntroduceerd door de Britse wiskundige en astronoom J.F.W. Herschel, 1792-1871) eindelijk eens af te schaffen.quote:Dit doet vrij weinig af aan een juist of onjuist antwoord Bram, sorry. Sterker nog, ik zou een 1/cos(x) = sec(x) zien als een vereenvoudiging, dus 'verplicht'. We laten x/x^2 toch ook niet staan wanneer we ook 1/x kunnen schrijven?
De geïnteresseerden in 1+1=2 kan ik aanraden om eens dit artikel te lezen. Het enige wat je nodig hebt is verzamelingen en een gezonde dosis logica. Daarmee worden getallen geconstrueerd waaruit allerlei basale eigenschappen zijn af te leiden. Ik vond het erg leuk om te lezenquote:Op donderdag 20 december 2012 22:54 schreef thenxero het volgende:
Ik ben ook wel benieuwd naar het bewijs van 1+1=2. Was dat wellicht met surreële getallen? Daarmee kan je dat soort "stellingen" wel bewijzen.
edit: oh ik zie nu dat ie hierboven al staat
Helaas denken ook veel meisjes dat nog.quote:Ook goed leesvoer voor achterlijke FOKkers die anno 2012 nog beweren dat wiskunde niets is voor meisjes.
Ik denk dat dit komt door de manier waarop wiskunde aan hen gepresenteerd wordt op het middelbaar onderwijs. Rijtjes sommen maken die uiteindelijk tot niets leiden. Als die Riparius zijn definitie van waardeloze wiskunde-educatie is, dan geef ik hem gelijk. Zeker in de eerste 4 jaar kom je binnen het vak wiskunde niets tegen dat je inspireert om verder te gaan. En daarnaast zal de diepgang ook wel missen, alhoewel je dat wel toe kunt schrijven aan het bovenstaande en iets van onwil.quote:Op vrijdag 21 december 2012 13:16 schreef Bram_van_Loon het volgende:
[..]
Helaas denken ook veel meisjes dat nog.
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |