ChatGPT kun je beetje vergelijken met Wikipedia een wetenschappelijke open source data base waar iedereen zijn kennis kan delen en een verhaaltje kan schrijven. Daarom wordt van Wikipedia hetzelfde gezegd, dat de info die je daar leest niet altijd correct is, of achterhaald omdat de schrijver van het verhaal verouderde bronnen heeft gebruikt. Dit geldt voor internet in het algemeen, je kunt er een hoop leren maar ook fout leren. Dus altijd voorzichtig zijn met klakkeloos aannemen dat het wel correct zal zijn.quote:Op donderdag 10 april 2025 06:36 schreef Bassie48 het volgende:
Vraag: waarom geeft chatgpt volgens jullie bijna altijd foute en onzinnige antwoorden (althans dit wordt gesuggereerd) als dit een goed antwoord blijkt te zijn (zo kan ik nog duizenden andere vragen stellen met een goed antwoord van chatgpt maar daar heb ik geen zin in
Ik zou niet weten waarom ik bij vragen alsquote:Op woensdag 9 april 2025 10:41 schreef Amerauder het volgende:
Je bedoelt de term oneindigheid toch? Dat verwijst natuurlijk niet naar de wis- en natuurkundige definities alleen.
nog andere contexten zou moeten beschouwen dan de zuiver wiskundige definitie.quote:Op maandag 7 april 2025 21:21 schreef Mijk het volgende:
Kun jij oneindigheid aantonen met een wiskundige som?
In de wiskunde maak je onderscheid tussen verschillende soorten "oneindigheid" door middel van één op één relaties. Deze zeggen je intuïtief of je de oneindig veel elementen ook kunt "ordenen". Zo is de verzameling van natuurlijke getallen (0,1,2,3,4,...,42, ...) oneindig groot, en deze kun je ordenen. Je blijkt vervolgens een één op één relatie te kunnen leggen tussen natuurlijke getallen en breuken. Daarom zeggen we dat de verzameling van natuurlijke getallen en breuken "even groot is", hoewel dat intuïtief gek zal klinken: je hebt immers al oneindig veel breuken tussen 0 en 1.quote:Op dinsdag 8 april 2025 12:48 schreef Alarmonoff het volgende:
Je hebt infinity en endless, eerste is het limiet van bv 1/x waarvan x de 0 nadert, tweede is onophoudelijk, zonder einde, maar meetbaar omdat je vanaf het begin kan meten of tellen, denk ik.
En wat is de kans op een 'goed antwoord' als je naar een waarzegster met een kristallen bol gaat? Of dat je gaat bidden naar jouw Opperwezen?quote:Op donderdag 10 april 2025 08:41 schreef Watuntrik het volgende:
[..]
ChatGPT ....
In dat geval wordt 'Vaak of niet altijd' een kans van 50% goed of fout.
Ligt er helemaal aan hoeveel informatie je verstrekt tijdens het consult/intake gesprek... De hele goede halen hun antwoorden uit wat ze in de vaktermen Koud Lezen (Cold Reading) noemen. Een mens geeft tijdens gesprekken meer info over zichzelf weg dan hij/zij er bewust van is. Of je moet er al bewust van zijn en er heel goed op letten en niets over jezelf vertellen. Dan nog daarnaast vertellen veel mensen alsnog veel met micro expressies. Reageren dus met houding, bewegingen, stemverandering en of gelaatstrekken op bepaalde vragen of uitlatingen van het zogenaamde medium. Ook die kunnen gelezen en interpreteert worden.quote:Op donderdag 10 april 2025 09:49 schreef Bassie48 het volgende:
En wat is de kans op een 'goed antwoord' als je naar een waarzegster met een kristallen bol gaat? Of dat je gaat bidden naar jouw Opperwezen?
Allicht zal dit ook in de aard en moeilijkheidsgraad van de vraag zitten...quote:Uit een recent onderzoek van Purdue University is gebleken dat ChatGPT, een populaire AI-app, in 52% van de gevallen foute antwoorden geeft.
Als mijn kennisniveau van een moeilijk onderwerp 0% is dan raadpleeg ik liever wiki of chatgpt dan een waarzegster omdat na het lezen van die digitale kennisbronnen mijn kennisniveau zeker is verhoogd en bij een waarzegster nauwelijks tot niet (waarzeggen is immers volgens wetenschappelijk onderzoek geen betrouwbare methode voor kennisverwerving). Als ik voor dat gegeven doel tevreden ben met mijn vermeende kennisvergroting dan ga ik over tot de orde van de dag en ga andere dingen doen. Als daarentegen het onderwerp zo belangrijk voor mij is dan neem ik geen genoegen met de antwoorden van de kennisbronnen. Dan ga ik verder op zoek, wellicht maak ik dan wel een afspraak met een specialist op dat gebied om mij verder te verlichten. Ik stap dan zeker niet naar een waarzegster, dominee, goeroe, new age teacher, tarotkaartenlegger, astroloog of kruidenvrouwtje.quote:Op donderdag 10 april 2025 10:19 schreef Watuntrik het volgende:
Maar eigenlijk snap ik jou vergelijk niet helemaal wat betreft ChatGPT en de waarzegger... Het blijft 50/50 wanneer je het zelf niet weet. Het gaat er eigenlijk om de vraag, wat heb je nou je aan een informatiebron die je alsnog zelf op correctheid moet controleren. In dit geval kun je dan alleen maar vragen stellen waar je het correcte antwoord al van weet.
[..]
Allicht zal dit ook in de aard en moeilijkheidsgraad van de vraag zitten...
Nou ja, praktisch stop het ergens, na 1/1 + 100 nullen 1/googolste? weten we niet meer hoe het te noemen. En het wereldrecord Pi staat nu op 62,8 biljoen cijfers achter de komma, de computer komt vooralsnog niet verder.quote:Op donderdag 10 april 2025 09:23 schreef Haushofer het volgende:
[..]
hoewel dat intuïtief gek zal klinken: je hebt immers al oneindig veel breuken tussen 0 en 1.
Dit zijn overigens allemaal feiten (volgens mij dan)
Ik snap 'm nog steeds niet... De waarzegger haalt niet de info uit de glazen bol, die doet alsof... Maar kan wel degelijk correct zijn met wat die zegt. Want ook de waarzegger gebruikt andere bronnen... Ook al kent de waarzegger je niet persoonlijk maar via omwegen kent ie iemand die jou ook beetje kent. Misschien iemand uit de buurt waar jij ook woont en daar maakt ie in de supermarkt terloops een babbeltje mee.quote:Op donderdag 10 april 2025 10:38 schreef Bassie48 het volgende:
[..]
Als mijn kennisniveau van een moeilijk onderwerp 0% is dan raadpleeg ik liever wiki of chatgpt dan een waarzegster omdat na het lezen van die digitale kennisbronnen mijn kennisniveau zeker is verhoogd en bij een waarzegster nauwelijks tot niet (waarzeggen is immers volgens wetenschappelijk onderzoek geen betrouwbare methode voor kennisverwerving). Als ik voor dat gegeven doel tevreden ben met mijn vermeende kennisvergroting dan ga ik over tot de orde van de dag en ga andere dingen doen. Als daarentegen het onderwerp zo belangrijk voor mij is dan neem ik geen genoegen met de antwoorden van de kennisbronnen. Dan ga ik verder op zoek, wellicht maak ik dan wel een afspraak met een specialist op dat gebied om mij verder te verlichten. Ik stap dan zeker niet naar een waarzegster, dominee, goeroe, new age teacher, tarotkaartenlegger, astroloog of kruidenvrouwtje.
Dat doet er niet toe. "Praktisch gezien" bestaan irrationale getallen ook niet.quote:
Dat is dan omdat irrationele getallen niet eindigen?quote:Op donderdag 10 april 2025 13:08 schreef Haushofer het volgende:
[..]
Dat doet er niet toe. "Praktisch gezien" bestaan irrationale getallen ook niet.
OK. Wat is bedoel te zeggen is dat ik op een praktische manier om ga met chatgpt of wiki om wat grip te krijgen op de werkelijkheid. Een ander mag van mijn part bijvoorbeeld naar een seance onder leiding van een tovenares of magiër voor hetzelfde doel. Hij mag van mij ook eerst een 10-jaar lang durende Phd halen in kwantumfysica alvorens een wiki-artikel of chatgpt te raadplegen voor wat algemene kennis op dat gebied.quote:
Door pi is het onmogelijk om een cirkel met een zekere oppervlakte te transformeren in een vierkant met exact dezelfde oppervlakte. Het is gewoon magie.quote:Op donderdag 10 april 2025 13:45 schreef Watuntrik het volgende:
[..]
Dat is dan omdat irrationele getallen niet eindigen?
Bv. gebruik ik Pi om een omtrek uit te rekenen voor een praktische toepassing kom ik er niet onderuit om het te laten eindigen op een afronding en dat maakt het getal dan rationeel.
Dan zou je kunnen zeggen 3.14 is werkelijk en praktisch bruikbaar maar is niet Pi.
Pi zelf is onbruikbaar...
Als legitieme verantwoording waarom ChatGPT alsnog te gebruiken... Of iemand dit nu snapt of niet zou eigenlijk geheel irrelevant moeten zijn. Ieder heeft daar zo zijn eigen mening over.quote:
Hoe bedoel je dat precies?quote:Op donderdag 10 april 2025 13:58 schreef Bassie48 het volgende:
[..]
Door pi is het onmogelijk om een cirkel met een zekere oppervlakte te transformeren in een vierkant met exact dezelfde oppervlakte. Het is gewoon magie.
Die zijden van dat vierkant zijn onmogelijk exact te berekenen door pi dus is de oppervlakte van dat vierkant niet exact gelijk aan de oppervlakte van die cirkel. In theorie wel, maar in de praktijk niet. Maar goed, de oppervlakte van de oorspronkelijke cirkel kon ook al door pi niet exact worden bepaald.quote:Op donderdag 10 april 2025 16:07 schreef Alarmonoff het volgende:
[..]
Hoe bedoel je dat precies?
Als r de straal van de cirkel is dan heeft een vierkant met zijden r * wortel(pi) de zelfde oppervlakte als de cirkel.
Wat ik al een paar keer tegen je hebt gezegd: gebruik het praktisch en met gezond verstand En trek geen verstrekkende conclusies ("het is helemaal niks") als het een keer mis gaat.quote:Op donderdag 10 april 2025 14:15 schreef Watuntrik het volgende:
[..]
Als legitieme verantwoording waarom ChatGPT alsnog te gebruiken... Of iemand dit nu snapt of niet zou eigenlijk geheel irrelevant moeten zijn. Ieder heeft daar zo zijn eigen mening over.
Ik gebruik het ook wel eens, maar wel geleerd er altijd een vraagteken bij te houden. Laatse ervaring was de vraag over de herkomst van een woord waar alle boekjes 'onduidelijk' aangeven. ChatGPT had een mooi verhaal. Ik vroeg het nog eens aan een taalkundige en die zei 'Onzin' nergens een bewijs voor te vinden. Dus mijn vraagteken was 'Wat voor bronnen gebruikt ChatGPT' Ik denk dat het de bot geen reet uitmaakt die is geprogrammeerd een verhaaltje te vertellen. En verteld het eerste beste te vinden verhaaltje dat aansluit.
Het kan ook zonder pi. Als je de exacte omtrek van de cirkel weet, dan zijn de zijden van een vierkant met de zelfde oppervlakte uit te drukken als wortel(0.5*r*omtrek).quote:Op donderdag 10 april 2025 16:59 schreef Bassie48 het volgende:
[..]
Die zijden van dat vierkant zijn onmogelijk exact te berekenen door pi dus is de oppervlakte van dat vierkant niet exact gelijk aan de oppervlakte van die cirkel. In theorie wel, maar in de praktijk niet. Maar goed, de oppervlakte van de oorspronkelijke cirkel kon ook al door pi niet exact worden bepaald.
Die exacte omtrek weet je ook niet vanwege pi.quote:Op donderdag 10 april 2025 17:03 schreef Alarmonoff het volgende:
[..]
Het kan ook zonder pi. Als je de exacte omtrek van de cirkel weet, dan zijn de zijden van een vierkant met de zelfde oppervlakte uit te drukken als wortel(0.5*r*omtrek).
AI kan straks heel goed werken met filters, bijvoorbeeld trusted digitale/internetbronnen. Wappietheorieën worden dan weggelaten. Maar ja gekke professoren die onzin verkondigen in hun vakgebied zal je altijd houden.quote:Op woensdag 9 april 2025 15:08 schreef bedachtzaam het volgende:
Als chatgtp ingevoerd krijgt dat mensen op de maan aan het strand kunnen leggen als ze dit en dat doen dan zal dat er na een vraag ook gewoon uit komen.
Mij lijkt dat dit wel voldoende antwoord is over hoe ik denk over AI als bron voor info.
Voor 100% zekerheid moet je je kennisbronnen 1, 2, 3, ... keer controleren/verifiëren. Elke kennisbron. Dat is sinds de geboorte van Homo Sapiens al het geval. Omdat 100% zekerheid niet werkt in de praktijk, nemen we genoegen met minder. Zelfs een briljante Nobelprijswinnaar heeft het niet altijd bij het rechte eind, bijvoorbeeld Einstein die voorspelde dat een zwart gat kan ontstaan uit niets anders dan licht. De huidige kwantumfysici zien dat anders.quote:Op donderdag 10 april 2025 10:19 schreef Watuntrik het volgende:
Het gaat er eigenlijk om de vraag, wat heb je nou je aan een informatiebron die je alsnog zelf op correctheid moet controleren.
Nogmaals, door de irrationaliteit van pi is het onmogelijk omtrek en oppervlakte van een cirkel EXACT te bepalen. Het is gewoon magisch: je hebt een feitelijk reële omtrek en oppervlakte (het is er gewoon) maar je kan het niet precies meten, hoe klein het verschil ook is. Met een rechthoek of cirkel heb je dit grote probleem niet.quote:Op vrijdag 11 april 2025 09:17 schreef Watuntrik het volgende:
Chatgpt had beter eerst kunnen beginnen met dat het irrationele getal niet ter zake doet. Immers de uitkomst 8.86 is ook een irrationeel getal. Daar hoef je verder geen rekening mee te houden want je zult uiteindelijk altijd een afwijking hebben. Verder is het wel correct dat het alleen maar bij benadering kan.
Althans heb het nog eens nageslagen en de vuistregel is:
Bij een irrationaal getal hoort een breuk die 'niet-repeterend' en oneindig is. En rationaal getal is wanneer je van de uitkomst een breuk kunt maken.
Bv.
√0,49 = 0,7 = 7/10 is rationaal
√78,54= 8,86227961644181 is irrationaal
Dan kom je uit op het feit dat je elk oppervlak rond of vierkant kunt maken. Indien je het oppervlak kent neem daar de wortel van en je hebt het vierkant in dit geval 8.86².
Ken je het oppervlak nog niet maar wel de diameter wel dan D x 3.14 = omtrek. Omtrek gedeeld door 4 = vierkant.
Wanneer herleggen in dit geval opnieuw leggen is met nieuw materiaal dan kan alles. Moet de vloerenlegger hetzelfde hout gebruiken komt ie praktisch toch ergens in de problemen en wordt het een niet bepaald mooie vloer. Waarom niet is lastig beknopt uit te leggen in woorden. Dan moet hij toch wat rare zaagkunsten gaan uithalen.
Bij zulke vraag kun je alleen maar een uitvoerig antwoord verwachten via die chat bot die er een puntje aan lult met "Fantastische vraag!" alsof het ook vloeren kan leggen. Idd Fantasie... Vraag het een timmerman die praktisch verstand heeft van vloeren leggen die zou eerst vragen terug stellen. Zoals "Waar heb je het over?" Bedoel je nu of ik van een rondje een vierkantje kan maken of van een ronde vloer een vierkante vloer van hetzelfde oppervlak? Wanneer ik als timmerman hetzelfde hout moet gebruiken dan lukt dat niet om verscheidene praktische redenen wordt het dan een hele rare vloer die niet meer vierkant te maken is. Krijg ik een voldoende hout dan kan ik elk oppervlak maken in welke vorm je dan maar wenst. En de wiskunde docent zou zeggen misschien wel maar ik ben timmerman noch vloerenlegger.quote:Op donderdag 10 april 2025 17:15 schreef Bassie48 het volgende:
VRAAG:
is het voor een persoon die vloeren legt mogelijk om van een houten vloer in cirkelvorm met een bepaalde oppervlakte een houten vloer in een vierkant te maken met exact dezelfde oppervlakte als je rekening houdt dat pi een irrationeel getal is?
Dat is het dus duidelijk niet, alles wat die chatbot daar schrijft is theorie...quote:Op donderdag 10 april 2025 17:43 schreef Bassie48 het volgende:
Dit voorbeeld geeft dus heel goed aan dat chatgpt prima is voor praktisch gebruik.
Dat je met oneindige getallen geen eindige getallen kunt maken zonder het af te ronden in de praktijk is nog al wiedes. Daarom bij benadering maar redelijk nauwkeurig, bijna etc. etc. etc. voldoende voor de praktijk. Dat maakt het dan ook een logisch feit dat oneindigheid in de praktijk eigenlijk niet bestaat. Daar hoef je niet continue over in herhaling te vallen alsof niemand dit begrijpt.quote:Op vrijdag 11 april 2025 10:34 schreef Bassie48 het volgende:
Nogmaals, door de irrationaliteit van pi is het onmogelijk omtrek en oppervlakte van een cirkel EXACT te bepalen.
En toch is een irrationeel getal een niet te begrijpen fenomeen. Stel je hebt een heel brood van een afgebakend, exact afgemeten lengte en gewicht. Deel het door drieën en je hebt 3 metrisch onbepaalde stukken omdat 0,3333333... oneindig door gaat. Drie onbepaalde stukken samenvoegen geeft weer een compleet exact afgebakend heel stuk brood. Het is gewoon een mindf@ck.quote:Op vrijdag 11 april 2025 11:23 schreef Watuntrik het volgende:
[..]
Bij zulke vraag kun je alleen maar een uitvoerig antwoord verwachten via die chat bot die er een puntje aan lult met "Fantastische vraag!" alsof het ook vloeren kan leggen. Idd Fantasie... Vraag het een timmerman die praktisch verstand heeft van vloeren leggen die zou eerst vragen terug stellen. Zoals "Waar heb je het over?" Bedoel je nu of ik van een rondje een vierkantje kan maken of van een ronde vloer een vierkante vloer van hetzelfde oppervlak? Wanneer ik als timmerman hetzelfde hout moet gebruiken dan lukt dat niet om verscheidene praktische redenen wordt het dan een hele rare vloer die niet meer vierkant te maken is. Krijg ik een voldoende hout dan kan ik elk oppervlak maken in welke vorm je dan maar wenst. En de wiskunde docent zou zeggen misschien wel maar ik ben timmerman noch vloerenlegger.
[..]
Dat is het dus duidelijk niet, alles wat die chatbot daar schrijft is theorie...
[..]
Dat je met oneindige getallen geen eindige getallen kunt maken zonder het af te ronden in de praktijk is nog al wiedes. Daarom bij benadering maar redelijk nauwkeurig, bijna etc. etc. etc. voldoende voor de praktijk. Dat maakt het dan ook een logisch feit dat oneindigheid in de praktijk eigenlijk niet bestaat. Daar hoef je niet continue over in herhaling te vallen alsof niemand dit begrijpt.
Maakt geen zak uit wat je dat ding vraagt alles is fantastisch, doordacht en of andere stroop op je mond gesmeerd. En gooit je ook nog eens emoticons om de oren... Zegt een hoop over de doelgroep waar het op inspeelt.
Niet als je wiskunde als een taal ziet waarmee je de werkelijkheid kunt beschrijven. Geen enkele taal doet dat 100% nauwkeurig. Het begint al met het begrip 'cirkel'. Er bestaan geen cirkels in de natuur, alleen benaderingen. Dito met Euclidische meetkunde; sinds Einstein weten we dat vlakke meetkunde een benadering is die in ons heelal nergens exact opgaat. Enzovoort.quote:
Lees net dat de (ouderwetse) staartdeling niet meer wordt uitgelegd op de scholen van tegenwoordig. Geen idee wanneer dit gestopt is... Ik heb ze vroeger tot in den treure moeten maken...quote:Op vrijdag 11 april 2025 14:00 schreef Bassie48 het volgende:
En toch is een irrationeel getal een niet te begrijpen fenomeen.
| Forum Opties | |
|---|---|
| Forumhop: | |
| Hop naar: | |