abonnement Unibet Coolblue Bitvavo
  maandag 29 november 2010 @ 22:32:02 #76
75592 GlowMouse
l'état, c'est moi
pi_89322167
Als het is 'minstens 1x een 3', dan kun je beter kijken hoeveel er geen 3 hebben.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_89322421
quote:
b) Één cijfer is sowieso een drie. Voor de andere vier cijfers heb je dan nog 10^4 mogelijkheden. Maar je moet er nog rekening mee houden dat die 3 op 5 plekken voor kan komen, dus nog even keer 5 doen.
Nee een cijfer hoeft niet per se 3 te zijn, je hebt 5 cijfers en je kiest uit 1 t/m 10, dus 3 kan toch ook niet voorkomen als het goed is?
Dus moet ik dan 5 nCr 3 doen?

quote:
c) Er zijn 5 nCr 2 cijfercombinaties waarin er twee 6'en voorkomen. Per combinatie zijn er nog 10^3 mogelijkheden, omdat de andere drie cijfers nog 10 waardes aan kunnen nemen. Dus (5 nCr 2 ) * 10^3.
quote:
c is (5 nCr 2 ) * 9^3.
Ik snap niet waarom je nog die 9^3 nog moet doen?
Als je 5 nCr 2 hebt gedaan, heb je toch de aantal combinaties met twee 6'en? :o

Met vriendelijke groeten!

[ Bericht 0% gewijzigd door PizzaMizza op 29-11-2010 22:42:53 ]
#freefrederike
  maandag 29 november 2010 @ 22:53:43 #78
75592 GlowMouse
l'état, c'est moi
pi_89323612
wat zeggen je aantekeningen en je boek?
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_89323850
is geen vraag uit het boek maar een vraag die de leraar zelf had gemaakt. Hij zei dat zo'n soort som, alleen met andere text en andere getallen precies terug komt.

EDIT: maar als je 5 nCr 2 doet, heb je toch het aantal mogelijkheden? waarom moet je daarna nog keer 9^3 doen?

mvg
#freefrederike
  maandag 29 november 2010 @ 23:00:41 #80
75592 GlowMouse
l'état, c'est moi
pi_89324069
Met één zes is het antwoord toch ook niet 5 nCr 1 (= 5)? Je kunt al makkelijk 6 getallen vinden.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_89324345
quote:
1s.gif Op maandag 29 november 2010 22:57 schreef PizzaMizza het volgende:
is geen vraag uit het boek maar een vraag die de leraar zelf had gemaakt. Hij zei dat zo'n soort som, alleen met andere text en andere getallen precies terug komt.

EDIT: maar als je 5 nCr 2 doet, heb je toch het aantal mogelijkheden? waarom moet je daarna nog keer 9^3 doen?

mvg
Hmm, 't hangt er een beetje vanaf hoe je die vraag moet interpreteren. Je kan het lezen als: op hoeveel manieren kan je de zessen rangschikken in de cijfercombinatie. Of: hoeveel cijfercombinaties met 2 zessen erin bestaan er. In het eerste geval is het inderdaad 5 nCr 2, en in het laatste geval (5 nCr 2) * 10^3.

Waarschijnlijk bedoelt hij het laatste :P
pi_89324870
edit:
quote:
1s.gif Op maandag 29 november 2010 22:23 schreef BasementDweller het volgende:
c) Er zijn 5 nCr 2 manieren om twee zessen in een 5-cijfercombinatie te hebben (bvb: 66xxx, 6x6xx, 6xx6x, etc). Per "rangschikking" van die zessen zijn er nog 9^3 mogelijkheden, omdat de andere drie cijfers allemaal nog 9 waardes aan kunnen aannemen. Dus in totaal zijn er (5 nCr 2 ) * 9^3 cijfercombinaties met daarin 2 zessen.
Zo is 't misschien duidelijker
pi_89324998
quote:
1s.gif Op maandag 29 november 2010 23:14 schreef BasementDweller het volgende:
edit:

[..]

Zo is 't misschien duidelijker
_O_ _O_ _O_ _O_ _O_ Bedankt allemaal voor de antwoorden! Dankzij jullie snap ik het.

Maar ik heb nog een twijfel, waarom 9^3?Je hebt bij de 3 overige toch nog keuze uit 1 t/m 10, dat zijn toch 10 cijfers?

MVG _O_
#freefrederike
pi_89325376
quote:
1s.gif Op maandag 29 november 2010 23:17 schreef PizzaMizza het volgende:

[..]

_O_ _O_ _O_ _O_ _O_ Bedankt allemaal voor de antwoorden! Dankzij jullie snap ik het.

Maar ik heb nog een twijfel, waarom 9^3?Je hebt bij de 3 overige toch nog keuze uit 1 t/m 10, dat zijn toch 10 cijfers?

MVG _O_
Niet als je precies twee zessen in de cijfercombinatie wil. Dan kunnen de andere getallen dus geen 6 meer zijn, en blijven er nog maar 9 mogelijkheden over, namelijk: 0,1,2,3,4,5,7,8,9 (en dus niet 10, dat zijn twee cijfers!).

In de vraag staat niet het woordje precies, dus er zou ook nog bedoeld kunnen worden dat er minstens twee zessen voorkomen in de cijfercombinatie. In dat geval kunnen die x'en nog wel 6 zijn.

Je kan dan niet zomaar zeggen dat je dan (5 nCr 2) * 10^3 mogelijkheden hebt, omdat je dan (zoals Glowmouse al opmerkte) bepaalde cijfercombinaties te vaak telt. (ga na!)

Dus als je wil berekenen hoeveel combinaties er zijn met minstens twee zessen, dan bereken je het aantal combinaties met precies 2 zessen +het aantal combinaties met precies 3 zessen + ... + het aantal combinaties met precies 5 zessen. Of sneller: 1 - (het aantal combinaties met 0 zessen +het aantal combinaties met precies 1 zes).
pi_89325712
BasementDweller, GlowMouse & Quyxz_ HAR-TE-LIJK bedankt!!! _O_
Dankzij jullie heb ik een veel grotere kans om een voldoende te scoren ^O^

Fijne avond nog,

Met vriendelijke groeten!
#freefrederike
pi_89327158
Succes
pi_89359117
quote:
1s.gif Op maandag 29 november 2010 22:12 schreef Quyxz_ het volgende:

[..]

De afgeleide van een formule naar een variabele t is simpelweg bij elke term door t delen, behalve als er geen t in de term zit, dan laat je hem weg.
De afgeleide van de functie f(t) = tn is f'(t) = ntn-1, niet f'(t) = tn-1.
pi_89394606
quote:
1s.gif Op maandag 29 november 2010 09:05 schreef thabit het volgende:

[..]

Hmm, 't is wel een open deel van dimensie g-1, maar die hoeft helemaal geen rationale punten te bevatten bedenk ik me net...
Klopt, maar het is onder de veronderstelling dat er genoeg rationale punten zijn ook in dat open deel.

Nog een vraagje maar dit keer over het Lefschetz getal. Stel je hebt een Torus T=R2/Z2 en een afbeelding fk T--> T: x+Z2 --> kx+Z2 (met k geheel). Deze induceert een afbeelding op homologie niveau en hiervan wil ik het Lefschetz getal uitrekenen. Ik zou moeten uitkomen op 1-2k+k2 maar het is nog niet gelukt. Als je kunt uitleggen hoe ze bijv aan -2k zijn gekomen kan ik de rest misschien zelf doen.
Alvast bedankt.

[ Bericht 18% gewijzigd door simounadi op 01-12-2010 18:07:51 ]
pi_89404144
Ik wil laten zien dat de restterm van Lagrange van de taylorreeks van -log(1-x) naar 0 gaat als mimetex.cgi?3%24%5Cblack%20l%5Cto%5Cinfty en mimetex.cgi?3%24%5Cblack%20%7Cx%7C%3C1. De restterm is mimetex.cgi?3%24%5Cblack%20r_l(x)%3D%5Cfrac%7Bf%5E%7B(l)%7D(tx)%7D%7Bl!%7Dx%5El voor een mimetex.cgi?3%24%5Cblack%20t%5Cin%5D0%2C1%5B.

Ik heb berekend dat mimetex.cgi?3%24%5Cblack%20f%5E%7B(l)%7D(tx)%3Dt%5El%20(l-1)!%20(1-tx)%5E%7B-l%7D. Dus de restterm is mimetex.cgi?3%24%5Cblack%20r_l%3D%5Cfrac%7Bx%5Elt%5El%7D%7Bl(1-tx)%5El%7D.

Hoe kan ik laten zien dat dit naar 0 gaat?

edit: dit gaat niet naar 0, ergens doe ik iets fout :(

[ Bericht 2% gewijzigd door BasementDweller op 01-12-2010 21:20:54 ]
pi_89409524
quote:
1s.gif Op woensdag 1 december 2010 18:02 schreef simounadi het volgende:

[..]

Klopt, maar het is onder de veronderstelling dat er genoeg rationale punten zijn ook in dat open deel.

Nog een vraagje maar dit keer over het Lefschetz getal. Stel je hebt een Torus T=R2/Z2 en een afbeelding fk T--> T: x+Z2 --> kx+Z2 (met k geheel). Deze induceert een afbeelding op homologie niveau en hiervan wil ik het Lefschetz getal uitrekenen. Ik zou moeten uitkomen op 1-2k+k2 maar het is nog niet gelukt. Als je kunt uitleggen hoe ze bijv aan -2k zijn gekomen kan ik de rest misschien zelf doen.
Alvast bedankt.
De H1 kun je identificeren met de Z2 die je uit R2 uitdeelt. De afbeelding x -> kx is een afbeelding van R2 naar R2 die Z2 naar zichzelf afbeeldt. De geïnduceerde afbeelding op H1 komt overeen met de afbeelding op Z2, deze is de 2x2-matrix k en heeft als spoor 2k.
pi_89415417
Groepentheorie./Lineaire Algebra
-Tips voor een dictaat of website met duidelijke uitleg over representaties, altijd welkom...

Dan vraag:
1)Stel je hebt een representatie gekregen in de vorm van een aantal matrices die bij de elementen van een groep horen. Dan word je gevraagd of de representatie irreducibel is. Dan moet je dus laten zien dat er GEEN invariante deelruimten zijn (behalve de hele ruimte en 0 dan). Hoe doe je dit zo snel mogelijk en in het algemeen?

2)Wat is nu precies de standaard representatie van een willekeurige groep? Of is dat niet iets logisch maar meer algemene kennis?

3)
pi_89421300
Ik moet via inductie bewijzen dat:



Nu heb ik de basis en de stap (gedeetelijk al) nu zit ik enkel in de problemen met de wiskundige omrekening van de stap.



Wat oh wat moet er op de . . . komen?
pi_89423751
quote:
1s.gif Op donderdag 2 december 2010 11:00 schreef Dale. het volgende:
Ik moet via inductie bewijzen dat:

[ afbeelding ]

Nu heb ik de basis en de stap (gedeetelijk al) nu zit ik enkel in de problemen met de wiskundige omrekening van de stap.

[ afbeelding ]

Wat oh wat moet er op de . . . komen?
In plaats van met "stappen" te werken kun je beter direct de ongelijkheid 2worteli - 1 + 1/(wortel(i+1)) <= 2wortel(i+1) - 1 proberen te bewijzen.
pi_89424121
quote:
1s.gif Op donderdag 2 december 2010 00:50 schreef TheLoneGunmen het volgende:
Groepentheorie./Lineaire Algebra
-Tips voor een dictaat of website met duidelijke uitleg over representaties, altijd welkom...

Dan vraag:
1)Stel je hebt een representatie gekregen in de vorm van een aantal matrices die bij de elementen van een groep horen. Dan word je gevraagd of de representatie irreducibel is. Dan moet je dus laten zien dat er GEEN invariante deelruimten zijn (behalve de hele ruimte en 0 dan). Hoe doe je dit zo snel mogelijk en in het algemeen?

2)Wat is nu precies de standaard representatie van een willekeurige groep? Of is dat niet iets logisch maar meer algemene kennis?

3)
1) Een representatie (aangenomen dat het over C is) is irreducibel als het bijbehorende karakter inproduct 1 met zichzelf heeft.

2) "Standaardrepresentatie" zegt me niets, zal wel iets voor speciale soorten groepen zijn. Of bedoel je misschien reguliere representatie?
pi_89425546
quote:
1s.gif Op woensdag 1 december 2010 22:42 schreef thabit het volgende:

[..]

De H1 kun je identificeren met de Z2 die je uit R2 uitdeelt. De afbeelding x -> kx is een afbeelding van R2 naar R2 die Z2 naar zichzelf afbeeldt. De geïnduceerde afbeelding op H1 komt overeen met de afbeelding op Z2, deze is de 2x2-matrix k en heeft als spoor 2k.
Je kan het ook zien als een product X x Y met X = Y = R/Z. Als je twee functies f: X -> X en g: Y -> Y hebt, bewijs dan maar eens dat L((f,g)) = L(f)L(g).
pi_89425561
quote:
1s.gif Op donderdag 2 december 2010 12:22 schreef thabit het volgende:

[..]

1) Een representatie (aangenomen dat het over C is) is irreducibel als het bijbehorende karakter inproduct 1 met zichzelf heeft.

2) "Standaardrepresentatie" zegt me niets, zal wel iets voor speciale soorten groepen zijn. Of bedoel je misschien reguliere representatie?
1)Klopt ja. Maar ik wilde dit eigenlijk doen zonder karakters. Dus dan moet je op zoek naar invariante deelruimtes, dit is dus eigenlijk gewoon lineaire algebra. Als die van dimensie 1 is, ga je gewoon op zoek naar eigenvectors. Maar in het algemeen? Hoe doe je dat zo snel mogelijk?
2) Thanks. :)
pi_89427919
quote:
1s.gif Op donderdag 2 december 2010 13:06 schreef TheLoneGunmen het volgende:

[..]

1)Klopt ja. Maar ik wilde dit eigenlijk doen zonder karakters. Dus dan moet je op zoek naar invariante deelruimtes, dit is dus eigenlijk gewoon lineaire algebra. Als die van dimensie 1 is, ga je gewoon op zoek naar eigenvectors. Maar in het algemeen? Hoe doe je dat zo snel mogelijk?
2) Thanks. :)
Met karakters is het toch echt het makkelijkst. ;). Maar als je het per se zonder wilt doen, dan komt het er dus eigenlijk op neer dat je van een gegeven n-bij-n matrix A, alle invariante deelruimten moet zien te vinden. Misschien is het in speciale gevallen makkelijk om zoiets te doen. Maar in het algemeen lijkt me dit een vrij lastige klus en zul je toch echt kennis over de irreducibele representaties van je groep moeten toepassen om zoiets te doen.
pi_89598267
Als je in de wiskunde zegt: either...or..., is dat dan exclusive or of inclusive or? Ik gok de eerste...
pi_89606094
quote:
1s.gif Op maandag 6 december 2010 19:19 schreef BasementDweller het volgende:
Als je in de wiskunde zegt: either...or..., is dat dan exclusive or of inclusive or? Ik gok de eerste...
Wiskunde is doorgaans geen gokwerk. Je kan het best gewoon lezen wat er staat en nagaan of het elkaar uitsluit of niet.
pi_89634776
quote:
1s.gif Op donderdag 2 december 2010 12:13 schreef thabit het volgende:

[..]

In plaats van met "stappen" te werken kun je beter direct de ongelijkheid 2worteli - 1 + 1/(wortel(i+1)) <= 2wortel(i+1) - 1 proberen te bewijzen.
^O^

nieuw:
Ik heb de volgende vraag voor me liggen:

Van 100 cmos chips zijn er 20 defect.
- Twee worden er random geselecteerd (zonder vervanging van de 100 chips). Hoe groot is de kans dat de 2de chip defect is?

Antwoord:
Laat A de event zijn dat de 1 chip defect is
Laat B de event zijn dat de 2 chip defect is
(A^c is het complement)

Dan m.b.v. de total probability rule..






En

En


Dus samen 20/100 = 0,2...

Nu staat in het antwoordenboekje echter het volgende...


Nu vroeg ik me af klopt me berekening wel?
abonnement Unibet Coolblue Bitvavo
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')