Je moet die opmerking onder op de linkerpagina gebruiken onder het kopje ‘Kenmerken Normale Verdeling’.quote:Op dinsdag 27 oktober 2009 14:35 schreef Thije het volgende:
Ik heb een pagina ingescand van mijn "rekenboek" Mijn kennis van kansverdelingen is echt gebaseerd op dit boek. Maar ik moet zeggen dat het boek niet echt duidelijk is voor mij.
http://img9.imageshack.us/img9/2681/img342u.jpg
Zo heb ik bij vraag 1 al de eerste vraagtekens. 1a, kan ik nog gewoon beantwoorden. (gewoon uit de tekst links halen) maar 1b en 1c zijn voor mij een raadsel. Zouden jullie mij een beetje op weg kunnen helpen? Het is voor mij nog veel te vaag. (ook die zogenaamde diagram waar ik net niets vanaf kan lezen..)
p.s. de antwoorden volgens het antwoordenboek zijn: 1a. ruim 68% 1b. 95,4% en c. 2,3%
Bedankt voor jullie hulp!
p.p.s. als ik dit snap, dan ga ik naar de volgende vragen, en heb ik jullie hulp wellicht weer nodig
Blijkbaar werkt het voor geen waarden van A en B. Je zult dus een ander soort functie moeten zoeken als particuliere oplossing.quote:Op dinsdag 27 oktober 2009 14:55 schreef Hondenbrokken het volgende:
Los op: y'' + 2y' + y = x e ^ {-x}
Complementaire oplossing:
y'' + 2y' + y = 0
r2 + 2r + 1 = 0
(r + 1)2 = 0
r = -1
y_c = c_1 e ^ {-x} + c_2 x e ^{-x}
Particuliere oplossing:
y_p = (Ax + B) e ^ {-x}
y_p' = (-Ax - B + A) e ^ {-x}
y_p'' = (Ax + B - 2A) e ^ {-x}
Als ik dit nu substitueer dan kom ik uit op:
((Ax + B - 2A) + 2(-Ax - B + A) + (Ax + B)) e ^ {-x} = x e^{-x}
Vereenvoudigen geeft:
0 = x e^{-x}
Dus welke waarden moet ik nu voor A en B invullen of heb ik wat fout gedaan?
Wat voor soort moet ik dan hebben?quote:Op dinsdag 27 oktober 2009 15:09 schreef thabit het volgende:
[..]
Blijkbaar werkt het voor geen waarden van A en B. Je zult dus een ander soort functie moeten zoeken als particuliere oplossing.
Je zou misschien iets als x2e-x kunnen proberen of zo.quote:Op dinsdag 27 oktober 2009 15:11 schreef Hondenbrokken het volgende:
[..]
Wat voor soort moet ik dan hebben?
1b. snap ik dan ook. Ik heb (u-1o) (u+1o) 14 centimer is 2x de standaarddeviattie. Dus: 95,4%. (u-2o) (u+2o)quote:Op dinsdag 27 oktober 2009 14:40 schreef Iblis het volgende:
[..]
Je moet die opmerking onder op de linkerpagina gebruiken onder het kopje ‘Kenmerken Normale Verdeling’.
Ik vind je manier van opschrijven wat verwarrend. Bij 1b heb je dus een verdeling met μ = 180cm, en de vraag is nu naar tussen (180 - 14) en (180 + 14), omdat σ = 7, is dit dus (μ - 2σ) en (μ + 2σ) – wat jij nog met (μ - 1σ) en (μ + 1σ) doet bij 1b) is me niet duidelijk.quote:Op dinsdag 27 oktober 2009 15:22 schreef Thije het volgende:
[..]
1b. snap ik dan ook. Ik heb (u-1o) (u+1o) 14 centimer is 2x de standaarddeviattie. Dus: 95,4%. (u-2o) (u+2o)
1c. Na lang denken snap ik hem. Eerst dacht ik 100%-95,4= 4,6%??? Dus dat is de rest! Maar de rest zit natuurlijk ook onder 180-14. Dus!! 4,6% / 2 = 2,3% (ik heb wel het gevoel dat mijn manier de onorthodoxe manier is. Klopt dat)
(u en o gebruik ik even als die wiskundige tekentjes)
Ik probeerde y_p = (Ax^2 + BX) e ^ {-x}quote:Op dinsdag 27 oktober 2009 15:14 schreef thabit het volgende:
[..]
Je zou misschien iets als x2e-x kunnen proberen of zo.
Ok dankjewel, maar in dit geval weet ik dus (gelukkig) dat die eerste met standaarddeviatie 68% is. (dat staat gegeven) kan ik daar zonder die 68% ook zelf achter komen door bijv. de grafiek af te lezen? (formule?) Of heb ik daar in dit geval te weinig informatie voor en moet ik het maar "aannemen"?quote:Op dinsdag 27 oktober 2009 15:33 schreef Iblis het volgende:
[..]
Ik vind je manier van opschrijven wat verwarrend. Bij 1b heb je dus een verdeling met μ = 180cm, en de vraag is nu naar tussen (180 - 14) en (180 + 14), omdat σ = 7, is dit dus (μ - 2σ) en (μ + 2σ) – wat jij nog met (μ - 1σ) en (μ + 1σ) doet bij 1b) is me niet duidelijk.
Maar goed, 1c. Je aanpak en antwoord is in principe goed, en ook wel orthodox, maar ik zal dan even toelichten waarom dat zo is. Er staat bovenaan de linker bladzijde opgemerkt dat de kromme symmetrisch is. Dus dat betekent dat inderdaad de helft van de rest onder 180 - 14 moet zitten, zoals jij het zegt, en de andere helft erboven, anders zou het niet symmetrisch zijn. Vandaar dat je dus 4,6%/2 = 2,3% krijgt.
Er geldt altijd (voor een Normale Verdeling) dat tussen (μ - 1σ) en (μ + 1σ) 68,3% van de waarnemingen ligt. Als dat niet zo is, dan is het geen Normale Verdeling, idem m.b.t. 95,4% voor (μ - 2σ) t/m (μ + 2σ) en 99,7% voor (μ - 3σ) t/m (μ + 3σ). Maar dat zijn getallen die inderdaad gegeven moeten zijn.quote:Op dinsdag 27 oktober 2009 15:43 schreef Thije het volgende:
[..]
Ok dankjewel, maar in dit geval weet ik dus (gelukkig) dat die eerste met standaarddeviatie 68% is. (dat staat gegeven) kan ik daar zonder die 68% ook zelf achter komen door bijv. de grafiek af te lezen? (formule?) Of heb ik daar in dit geval te weinig informatie voor en moet ik het maar "aannemen"?
Kijk eens wat er onderaan je linker bladzijde staat ... De antwoorden op 1b en 1c krijg je ook (bijna) kado. Welk niveau is dit als ik vragen mag?quote:Op dinsdag 27 oktober 2009 14:35 schreef Thije het volgende:
Ik heb een pagina ingescand van mijn "rekenboek" Mijn kennis van kansverdelingen is echt gebaseerd op dit boek. Maar ik moet zeggen dat het boek niet echt duidelijk is voor mij.
http://img9.imageshack.us/img9/2681/img342u.jpg
Zo heb ik bij vraag 1 al de eerste vraagtekens. 1a, kan ik nog gewoon beantwoorden. (gewoon uit de tekst links halen) maar 1b en 1c zijn voor mij een raadsel. Zouden jullie mij een beetje op weg kunnen helpen? Het is voor mij nog veel te vaag. (ook die zogenaamde diagram waar ik net niets vanaf kan lezen..)
p.s. de antwoorden volgens het antwoordenboek zijn: 1a. ruim 68% 1b. 95,4% en c. 2,3%
Bedankt voor jullie hulp!
p.p.s. als ik dit snap, dan ga ik naar de volgende vragen, en heb ik jullie hulp wellicht weer nodig
Je aanpak is niet generiek genoeg. Als y (de gezochte functie) een product is van een kwadratisch polynoom in x en e-x, dan zullen de eerste afgeleide y' en de tweede afgeleide y'' dat ook zijn (waarom?). En het rechterlid van je DV is ook zo op te vatten, zij het dat de coëfficient van x2 hier nul is. Ik zou dus uitgaan van:quote:Op dinsdag 27 oktober 2009 15:41 schreef Hondenbrokken het volgende:
[..]
Ik probeerde y_p = (Ax^2 + BX) e ^ {-x}
Dat kwam uit op:
(-2Ax + 2A) e ^ {-x} = x e {-x}
-2A = 1 en 2A = 0
Een dergelijke waarde van A bestaat niet.
Ik heb nog steeds hulp nodig.
Met lineaire en constante termen in het polynoom zal het niet gaan werken, die worden toch naar 0 gestuurd door de differentiaaloperator (het lineaire stelsel waarnaar je verwijst zal gegarandeerd strijdig zijn). Maar je zou natuurlijk nog een graadje verder kunnen gaan of gewoon in het algemeen xne-x invullen en kijken wat er gebeurt. Als zoiets niet werkt, dan weet ik het ook niet zo gauw maar het lijkt me dat het wel moet werken.quote:Op dinsdag 27 oktober 2009 17:45 schreef Riparius het volgende:
[..]
Je aanpak is niet generiek genoeg. Als y (de gezochte functie) een product is van een kwadratisch polynoom in x en e-x, dan zullen de eerste afgeleide y' en de tweede afgeleide y'' dat ook zijn (waarom?). En het rechterlid van je DV is ook zo op te vatten, zij het dat de coëfficient van x2 hier nul is. Ik zou dus uitgaan van:
y = (Ax2 + Bx + C)e-x
Door differentiëren, invullen in de DV, herleiden van het linkerlid op een product van een kwadratisch polynoom en e-x en gelijkstellen van de coëfficienten van het kwadratisch polynoom in linker en rechter lid krijg je dan een stelsel van drie lineaire vergelijkingen in de drie onbekenden A,B,C. Dan zou het moeten lukken.
Werkt niet.quote:Op dinsdag 27 oktober 2009 17:45 schreef Riparius het volgende:
[..]
Je aanpak is niet generiek genoeg. Als y (de gezochte functie) een product is van een kwadratisch polynoom in x en e-x, dan zullen de eerste afgeleide y' en de tweede afgeleide y'' dat ook zijn (waarom?). En het rechterlid van je DV is ook zo op te vatten, zij het dat de coëfficient van x2 hier nul is. Ik zou dus uitgaan van:
y = (Ax2 + Bx + C)e-x
Door differentiëren, invullen in de DV, herleiden van het linkerlid op een product van een kwadratisch polynoom en e-x en gelijkstellen van de coëfficienten van het kwadratisch polynoom in linker en rechter lid krijg je dan een stelsel van drie lineaire vergelijkingen in de drie onbekenden A,B,C. Dan zou het moeten lukken.
Ah, ik zie het. Probeer de eerste suggestie van Thabit nog even uit (een derdegraads polynoom). Anders zou ik het zo gauw ook niet weten. Heb nu geen tijd om er echt in te duiken.quote:Op dinsdag 27 oktober 2009 18:32 schreef Hondenbrokken het volgende:
[..]
Werkt niet.
y_p = (Ax^2 + Bx + C) e {-x}
y'_p = (-Ax^2 + (2A-B)x + (B - C)) e {-x}
y''_p = (Ax^2 + (B-4A)x + (2A - 2B + C) e {-x}
Invullen in y'' + 2y' + y = x e ^ {-x}
(A - 2A + A) x^2 + (B - 4A +4A -2B + B)x + (2A - 2B + C +2B -2C + C) e ^ {-x} = e^{-x}
Vereenvoudigen
2A e^{-x} = e^{-x}
Misschien moet je dan proberen om het langzamer en nauwkeuriger uit te rekenen want volgens mij komt er namelijk wel wat uit.quote:Op dinsdag 27 oktober 2009 20:23 schreef Hondenbrokken het volgende:
Deze heb ik iets sneller en slordiger uitgerekend, maar weer geen oplossing.
Je hebt van doen met een tweede orde lineaire inhomogene DV met constante coëfficienten. De algemene aanpak is dat je een particuliere oplossing yp(x) vindt van deze DV en de algemene oplossing yh(x) van de corresponderende homogene DV. De algemene oplossing van de inhomogene DV wordt dan gegeven door y(x) = yp(x) + yh(x).quote:Op dinsdag 27 oktober 2009 20:23 schreef Hondenbrokken het volgende:
Boven de vraag staat dat je het op moet lossen middels "the method of undetermined constants".
Ik heb ook gehad dat als de oplossingen gelijk zijn aan de complementaire functie je dan alle termen met x moest vermeningvuldigen, maar dat heb ik al 2 keer geprobeerd. Hoe je dit zou moeten doen met een onbepaald aantal coefficiënten weet ik niet en vraag me af of dat dan wel een oplossing oplevert.
Ik denk dat ik het begrijp. Normaliter zou ik zoiets op de GR doen, met in geval van vraag 2A, (12, 1099,8,16) om zo de kans van boven de 12 uit te rekenen. GR is alleen niet toegestaanquote:Op dinsdag 27 oktober 2009 22:32 schreef GlowMouse het volgende:
X is normaal verdeeld met mu=8 en sigma² = 16.
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |