quote:Op dinsdag 11 juli 2006 19:36 schreef teletubbies het volgende:
k had 8,6 voor me herkansing visual basic en een 8,5 voor mijn opdracht (spelletje).. he he bedankt allemaal..vooral : glowmouse.
dit jaar me propedeuse (hbo) bedrijfswiskunde behaald.. nu ga ik wisk. studeren op univ.quote:
Dijkstra werkt niet zo. Dijkstra vindt het korste pad tussen twee punten. Niet het kortste pad dat een willekeurig groot aantal punten aandoet. Dat is wat anders. Stel, je weet al wat de volgorde van de punten is, b.v. ABCD, dan kun je Dijkstra doen van A naar B, van B naar C, en van C naar D. Dat is allemaal te doen.quote:Op dinsdag 11 juli 2006 22:01 schreef teletubbies het volgende:
ergens staat er een afstudeerscriptie over dit soort optimale oplossingen...
trefwoorden: het algoritme van Dijkstra..
een programma..ken ik echt niet
3/4 = 9/12, dus het punt 3/4 ligt op 1/4 deel van het laatste interval [2/3, 1]=[8/12,12/12]. Evenzo ligt 1/4 op 3/4 van het interval [0,1/3]. Bij elke iteratie ligt het punt dus in een interval dat overblijft. Het zit dus in de Cantor verzameling.quote:Op donderdag 13 juli 2006 21:19 schreef teletubbies het volgende:
een vraagje waarom zit 3/4 in cantor-verzameling?
er geldt wel dat 3/4=2/3(1+1/9+1/81+..) (trouwens valt ditmatie ook te bewijzen?
k heb gestopt bij:
sommatie (n=1 tot oneindig) 1/3^n=1 (why?)
en als de som is 1,
3/4 zit wel in [2/3, 1] dat is logisch....
1 + x + x2 + ... + xn = (1-xn+1)/(1-x), vervolgens neem je n naar oneindig.quote:Op donderdag 13 juli 2006 21:19 schreef teletubbies het volgende:
een vraagje waarom zit 3/4 in cantor-verzameling?
er geldt wel dat 3/4=2/3(1+1/9+1/81+..) (trouwens valt ditmatie ook te bewijzen?
k heb gestopt bij:
sommatie (n=1 tot oneindig) 1/3^n=1 (why?)
en als de som is 1,
3/4 zit wel in [2/3, 1] dat is logisch....
Je kunt aan de schrijfwijze van een getal in het 3-tallig stelsel zien of het in de cantorverzameling zit. Grofweg komt het erop neer dat de getallen in de cantor verzameling de getallen zijn die geen enen hebben in de drietallige schrijfwijze.quote:Op vrijdag 14 juli 2006 15:57 schreef teletubbies het volgende:
voor dat getal was het inderdaad niet zo moeilijk, voor andere getallen moest ik ze blijkbaar schrijven in een ander getalstelsel ( met basis 3)
eigenlijk was het de som van 1/9^n (n=1 tot oneindig)
Hey ja! Ik heb het even uitgetekend en het klopt jaquote:Op woensdag 19 juli 2006 16:33 schreef thabit het volgende:
Ja, als C het snijpunt is van de cirkel met de middelloodlijn van A en B, dan gaan de middelloodlijnen van AB, BC en CA door 1 punt en dat punt is het middelpunt van de cirkel.
Wees iets nauwkeuriger, gaat het om precies één keer de rode, of om minstens één keer?quote:Op donderdag 20 juli 2006 11:04 schreef DaFan het volgende:
Ff snel een korte vraag:
10 knikkers, 9 wit en 1 rood.
Hoe reken je dan ook alweer de kans uit dat je met 10x pakken met terugleggen de rode te pakken krijgt? (Maakt niet uit of dat de eerste poging is of de achtste).
Tis iets met 1 boven tien enzo maar 4 jaar geen wiskunde na eindexamen helpt niet
Minstensquote:Op donderdag 20 juli 2006 11:32 schreef Iblis het volgende:
[..]
Wees iets nauwkeuriger, gaat het om precies één keer de rode, of om minstens één keer?
Dat hangt ook af van welke waarden je getallen aan kunnen nemen. Als het bijvoorbeeld om gehele getallen tussen 0 en 100 gaat, kun je makkelijk bij houden of je een getal al hebt gehad door middel van een array. De complexiteit van het algoritme wordt dan O(n) tijd.quote:Op maandag 31 juli 2006 15:37 schreef Pie.er het volgende:
Hoe bewijs je dat een algoritme om dubbelen te zoeken minimaal O(n log n) is? Of is er stiekem toch nog een sneller algoritme dat ik over het hoofd zie?
Het gaat om N elementen, dus zou je bijectie kunnen maken naar een reeks gehele getallen. Het probleem zit hem alleen in die array: ongesorteerd moet je het k-de element vergelijken met de k-1 elementen uit de array. Volgens mij zit je dan met een process van orde n².quote:Op maandag 31 juli 2006 19:11 schreef Wolfje het volgende:
[..]
Dat hangt ook af van welke waarden je getallen aan kunnen nemen. Als het bijvoorbeeld om gehele getallen tussen 0 en 100 gaat, kun je makkelijk bij houden of je een getal al hebt gehad door middel van een array. De complexiteit van het algoritme wordt dan O(n) tijd.
Hmm.. nee, ik had een boolean array in gedachten. Als alle getallen tusen 0 en 100 (inclusief) liggen, krijg je iets als:quote:Op maandag 31 juli 2006 19:42 schreef GlowMouse het volgende:
[..]
Het gaat om N elementen, dus zou je bijectie kunnen maken naar een reeks gehele getallen. Het probleem zit hem alleen in die array: ongesorteerd moet je het k-de element vergelijken met de k-1 elementen uit de array. Volgens mij zit je dan met een process van orde n².
| 1 2 3 4 5 6 7 8 | boolean[] inVerzameling = new boolean[101]; for ( int i = 0; i < a.length; i++ ) { if ( inVerzameling[ a[ i ] ] ) return true; inVerzameling[ a[ i ] ] = true; } return false; } |
Hmm ja inderdaad. In mijn geval ging het om willekeurige integers, dus zou de opslag een oneindige array worden, maar dat is theoretisch geen enkel probleem.quote:Op maandag 31 juli 2006 20:13 schreef Wolfje het volgende:
[..]
Hmm.. nee, ik had een boolean array in gedachten. Als alle getallen tusen 0 en 100 (inclusief) liggen, krijg je iets als:
[ code verwijderd ]
Niet de bedoeling nee. Maar omdat er een tegenvoorbeeld is dat sneller dan O(n log n) is, hoe idioot veel geheugen er ook gebruikt wordt, weet ik dat ik geen bewijs ga vinden voor O(n log n) als ondergrens als ik geen geheugenoverwegingen meeneem.quote:Op dinsdag 1 augustus 2006 11:20 schreef thabit het volgende:
Meer geheugen dan tijd gebruiken lijkt me toch niet helemaal de bedoeling. Overigens zie ik ook niet hoe het sneller kan dan O(n log n), al zie ik ook niet direct hoe je dat kunt bewijzen.
Ik neem aan dat initialisatie van geheugen ook tijd kost? En al zou dat niet zo zijn, dat je in elk geval een eindige hoeveelheid geheugen gebruikt? Waarom enerzijds gebruiken dat natuurlijke getallen willekeurig groot kan zijn, zodat de 'tabelmethode' niet werkt en anderzijds gebruiken dat ze begrensd zijn zodat ze in constante tijd met elkaar vergeleken kunnen worden? Er zijn trouwens denk ik wel probabilistische methodes te bedenken die bij elke input in O(n) verwachte operaties het kunnen bepalen. Is dat een probleem of moet het per se deterministisch zijn?quote:Op donderdag 3 augustus 2006 09:44 schreef Pie.er het volgende:
[..]
Niet de bedoeling nee. Maar omdat er een tegenvoorbeeld is dat sneller dan O(n log n) is, hoe idioot veel geheugen er ook gebruikt wordt, weet ik dat ik geen bewijs ga vinden voor O(n log n) als ondergrens als ik geen geheugenoverwegingen meeneem.
En ik ga uit van een programmeertaal waarin twee getallen in 1 operatie met elkaar vergeleken kunnen worden. Dat dit in werkelijkheid wellicht niet zo is maakt niet veel uit voor de theorie
Ja die geheugeninitialisatie daar zat ik ook nog mee. Maar in Wolfjes code kwamquote:Op donderdag 3 augustus 2006 09:52 schreef thabit het volgende:
[..]
Ik neem aan dat initialisatie van geheugen ook tijd kost? En al zou dat niet zo zijn, dat je in elk geval een eindige hoeveelheid geheugen gebruikt? Waarom enerzijds gebruiken dat natuurlijke getallen willekeurig groot kan zijn, zodat de 'tabelmethode' niet werkt en anderzijds gebruiken dat ze begrensd zijn zodat ze in constante tijd met elkaar vergeleken kunnen worden? Er zijn trouwens denk ik wel probabilistische methodes te bedenken die bij elke input in O(n) verwachte operaties het kunnen bepalen. Is dat een probleem of moet het per se deterministisch zijn?
| 1 |
Nee, ik heb er wel even over nagedacht, maar zie het allebei toch niet echt direct. Al lijkt het me heel sterk dat het sneller zou kunnen dan O(n log n). Een andere manier dan sorteren, die ook O(n log n) is, is de lijst aflopen en opslaan in een gebalanceerde boom ipv een tabel. Maar helaas zijn de operaties in een gebalanceerde boom ook O(log n).quote:Op donderdag 3 augustus 2006 10:17 schreef Pie.er het volgende:
[..]
Maar zou je, zonder oneindig geheugen en met de aanname dat twee getallen in 1 operatie met elkaar te vergelijken zijn, een idee hebben voor een methode die sneller dan O(n log n) is?
Of een idee voor een bewijs dat zoiets niet mogelijk is?
| Forum Opties | |
|---|---|
| Forumhop: | |
| Hop naar: | |