abonnement Unibet Coolblue Bitvavo
  dinsdag 26 maart 2019 @ 23:31:05 #26
468509 _--_
In varietate concordia
pi_185868803
quote:
1s.gif Op dinsdag 26 maart 2019 23:28 schreef Lunatiek het volgende:

[..]

Ik ook niet :'( Meetkunde dan weer wel.
Nu heb ik 8 gedeeld door 5 om uit te rekenen met welk product 5 is vermenigvuldigd om 8 te krijgen. Dit heb ik uitgevoerd bij 4.

Weer 6.4 :')
Crack the following and we will get back to you: !1!llssod000;;
  dinsdag 26 maart 2019 @ 23:31:43 #27
468509 _--_
In varietate concordia
pi_185868810
quote:
1s.gif Op dinsdag 26 maart 2019 23:30 schreef Lunatiek het volgende:

[..]

Wat is bij jou op school de definitie van exact?
Het overnemen van antwoorden van je rekenmachine.
Crack the following and we will get back to you: !1!llssod000;;
pi_185868857
Toch simpel? Stelling van Pythagoras in je achterhoofd gewoon invullen?
"Het enkele feit dat de gewasbeschermingsmiddelen zijn toegelaten, geeft in ieder geval geen garantie op het ontbreken van met name een uitgesteld schadelijk effect op de gezondheid van mensen."
  dinsdag 26 maart 2019 @ 23:36:28 #29
468509 _--_
In varietate concordia
pi_185868863
quote:
0s.gif Op dinsdag 26 maart 2019 23:35 schreef ludovico het volgende:
Toch simpel? Stelling van Pythagoras in je achterhoofd gewoon invullen?
Nou, laat zien dan?
Crack the following and we will get back to you: !1!llssod000;;
pi_185868879
quote:
1s.gif Op dinsdag 26 maart 2019 23:36 schreef _--_ het volgende:

[..]

Nou, laat zien dan?
In een rechthoekige driehoek is de som van de kwadraten van de lengtes van de rechthoekszijden gelijk aan het kwadraat van de lengte van de schuine zijde.
"Het enkele feit dat de gewasbeschermingsmiddelen zijn toegelaten, geeft in ieder geval geen garantie op het ontbreken van met name een uitgesteld schadelijk effect op de gezondheid van mensen."
  dinsdag 26 maart 2019 @ 23:38:08 #31
468509 _--_
In varietate concordia
pi_185868889
quote:
0s.gif Op dinsdag 26 maart 2019 23:37 schreef ludovico het volgende:

[..]

In een rechthoekige driehoek is de som van de kwadraten van de lengtes van de rechthoekszijden gelijk aan het kwadraat van de lengte van de schuine zijde.
Ja, dat weet ik. Maar in dit sommetje kan je die lang niet overal gebruiken. Zo simpel is het dus niet.
Crack the following and we will get back to you: !1!llssod000;;
pi_185869181
CB = 8

CE = 5

CD = 4

25 = 16+ 9

Wortel 9 = 3... = DE

DB = 4

DE = 3

EB = (16 + 9 )^0,5 = 5

25 = EA^2 + AB^2
25 - EA^2 = AB^2

64 = (5+EA)^2 + AB^2

64 - (5+EA)^2 = AB^2

64 - (5+EA)^2 = 25 - EA^2

39 - (5+EA)^2 = - EA^2

39 - 25 - EA^2 - 10EA = -EA^2

14 = 10EA

EA = 1,4

Zou ik denken.
"Het enkele feit dat de gewasbeschermingsmiddelen zijn toegelaten, geeft in ieder geval geen garantie op het ontbreken van met name een uitgesteld schadelijk effect op de gezondheid van mensen."
  woensdag 27 maart 2019 @ 05:35:21 #33
423997 Lunatiek
RadicaalFilosoof
pi_185869979
quote:
1s.gif Op dinsdag 26 maart 2019 23:31 schreef _--_ het volgende:

[..]

Het overnemen van antwoorden van je rekenmachine.
Oké. De echte wereld komt teneinde :'(
  woensdag 27 maart 2019 @ 05:55:03 #34
423997 Lunatiek
RadicaalFilosoof
pi_185870005
quote:
0s.gif Op dinsdag 26 maart 2019 22:47 schreef Hyaenidae het volgende:
19,2 in 2 minuten uit hoofdje
Echt te makkelijk deze wollah jeweetzelf
Dit klopt.
Alleen om punten te pakken moet je ook nog zeggen hoe je tot het antwoord bent gekomen.

quote:
0s.gif Op woensdag 27 maart 2019 00:07 schreef ludovico het volgende:
CB = 8

CE = 5

CD = 4

25 = 16+ 9

Wortel 9 = 3... = DE

DB = 4

DE = 3

EB = (16 + 9 )^0,5 = 5

25 = EA^2 + AB^2
25 - EA^2 = AB^2

64 = (5+EA)^2 + AB^2

64 - (5+EA)^2 = AB^2

64 - (5+EA)^2 = 25 - EA^2

39 - (5+EA)^2 = - EA^2

39 - 25 - EA^2 - 10EA = -EA^2

14 = 10EA

EA = 1,4

Zou ik denken.
Dat is veel te ingewikkeld als je al weet dat de verhoudingen 3:4:5 zijn, čn dat de lange zijde 8 is.

5*1,6 = 8

Dus alle zijden van ABC zijn 1,6 groter dan die van CDE.

4,8 (AB)
6,4 (AC)
8,0 (BC)

De omtrek is de som daarvan, 19,2.

Maar je krijgt vast bonuspunten als je het eerste deel van je som gebruikt (met die cirkel) om het tweede deel te beantwoorden.

[ Bericht 0% gewijzigd door Lunatiek op 27-03-2019 06:08:07 ]
  woensdag 27 maart 2019 @ 08:04:53 #35
468509 _--_
In varietate concordia
pi_185870676
quote:
1s.gif Op woensdag 27 maart 2019 05:55 schreef Lunatiek het volgende:

[..]

Dit klopt.
Alleen om punten te pakken moet je ook nog zeggen hoe je tot het antwoord bent gekomen.
[..]

Dat is veel te ingewikkeld als je al weet dat de verhoudingen 3:4:5 zijn, čn dat de lange zijde 8 is.

5*1,6 = 8

Dus alle zijden van ABC zijn 1,6 groter dan die van CDE.

4,8 (AB)
6,4 (AC)
8,0 (BC)

De omtrek is de som daarvan, 19,2.

Maar je krijgt vast bonuspunten als je het eerste deel van je som gebruikt (met die cirkel) om het tweede deel te beantwoorden.
Maar als je de driehoek bekijk kan EA toch nooit een lengte hebben van 1.4. Das de helft van ED maar de lijnen zien er gelijk uit.
Crack the following and we will get back to you: !1!llssod000;;
pi_185872003
quote:
1s.gif Op woensdag 27 maart 2019 08:04 schreef _--_ het volgende:

[..]

Maar als je de driehoek bekijk kan EA toch nooit een lengte hebben van 1.4. Das de helft van ED maar de lijnen zien er gelijk uit.
Schaal klopt niet nee, maar je zou inderdaad ook gewoon kunnen meten.
"Het enkele feit dat de gewasbeschermingsmiddelen zijn toegelaten, geeft in ieder geval geen garantie op het ontbreken van met name een uitgesteld schadelijk effect op de gezondheid van mensen."
pi_185872012
quote:
1s.gif Op woensdag 27 maart 2019 05:55 schreef Lunatiek het volgende:

[..]

Dit klopt.
Alleen om punten te pakken moet je ook nog zeggen hoe je tot het antwoord bent gekomen.
[..]

Dat is veel te ingewikkeld als je al weet dat de verhoudingen 3:4:5 zijn, čn dat de lange zijde 8 is.

5*1,6 = 8

Dus alle zijden van ABC zijn 1,6 groter dan die van CDE.

4,8 (AB)
6,4 (AC)
8,0 (BC)

De omtrek is de som daarvan, 19,2.

Maar je krijgt vast bonuspunten als je het eerste deel van je som gebruikt (met die cirkel) om het tweede deel te beantwoorden.
Waarom 3:4:5? Die driehoeken zijn niet hetzelfde toch? In hoeken?

Ah toch wel... 90° hoek en hoek C.
"Het enkele feit dat de gewasbeschermingsmiddelen zijn toegelaten, geeft in ieder geval geen garantie op het ontbreken van met name een uitgesteld schadelijk effect op de gezondheid van mensen."
  woensdag 27 maart 2019 @ 11:58:27 #38
423997 Lunatiek
RadicaalFilosoof
pi_185874256
Volgens mij zie ik wel iets over het hoofd... niet helemaal wakker :z
pi_185879724
quote:
1s.gif Op woensdag 27 maart 2019 08:04 schreef _--_ het volgende:

[..]

Maar als je de driehoek bekijk kan EA toch nooit een lengte hebben van 1.4. Das de helft van ED maar de lijnen zien er gelijk uit.
De tekening bij de opgave klopt niet met de gegevens. Dat is vermoedelijk met opzet gedaan om mensen zoals jij in verwarring te brengen. Het is dan ook niet de bedoeling om op de tekening af te gaan maar om te redeneren aan de hand van de gegevens uit de opgave. Jouw eigen tekening hierboven klopt trouwens ook niet.

Driehoek ABC is gelijkvormig met driehoek DEC (kenmerk hh) en dus is

AB : AC = DE : DC = 3 : 4

Je ziet nu dat jouw tekening niet klopt want jij hebt AB in je tekening 4 cm lang genomen en dan zou AC dus (4/3)·4 = 16/3 = 5⅓ cm lang moeten zijn en niet 7 cm zoals in jouw tekening.

Op grond van de gelijkvormigheid van driehoek ABC en driehoek DEC hebben we ook

AB : DE = AC : DC = BC : EC = 8 : 5

waaruit direct volgt AB = (8/5)·3 = 24/5 = 4⅘ en AC = (8/5)·4 = 32/5 = 6⅖. De omtrek van driehoek ABC is gelijk aan 8/5 maal de omtrek van driehoek DEC en de omtrek van die laatste driehoek is 12, zodat we inderdaad (8/5)·12 = 96/5 = 19⅕ vinden voor de omtrek van driehoek ABC.
pi_185880179
quote:
1s.gif Op woensdag 27 maart 2019 05:55 schreef Lunatiek het volgende:

[..]

Dit klopt.
Alleen om punten te pakken moet je ook nog zeggen hoe je tot het antwoord bent gekomen.
1 zijde weet je al en de andere 2 zijn in verhouding, dus beide x1,6 doen en de 3 bij elkaar optellen.

Mensen die hier een heel A4'tje voor nodig hebben met berekeningen :')
pindazakje
  woensdag 27 maart 2019 @ 17:21:52 #41
468509 _--_
In varietate concordia
pi_185880421
quote:
0s.gif Op woensdag 27 maart 2019 16:45 schreef Riparius het volgende:

[..]

De tekening bij de opgave klopt niet met de gegevens. Dat is vermoedelijk met opzet gedaan om mensen zoals jij in verwarring te brengen. Het is dan ook niet de bedoeling om op de tekening af te gaan maar om te redeneren aan de hand van de gegevens uit de opgave. Jouw eigen tekening hierboven klopt trouwens ook niet.

Driehoek ABC is gelijkvormig met driehoek DEC (kenmerk hh) en dus is

AB : AC = DE : DC = 3 : 4

Je ziet nu dat jouw tekening niet klopt want jij hebt AB in je tekening 4 cm lang genomen en dan zou AC dus (4/3)·4 = 16/3 = 5⅓ cm lang moeten zijn en niet 7 cm zoals in jouw tekening.

Op grond van de gelijkvormigheid van driehoek ABC en driehoek DEC hebben we ook

AB : DE = AC : DC = BC : EC = 8 : 5

waaruit direct volgt AB = (8/5)·3 = 24/5 = 4⅘ en AC = (8/5)·4 = 32/5 = 6⅖. De omtrek van driehoek ABC is gelijk aan 8/5 maal de omtrek van driehoek DEC en de omtrek van die laatste driehoek is 12, zodat we inderdaad (8/5)·12 = 96/5 = 19⅕ vinden voor de omtrek van driehoek ABC.
Bedankt voor het uitschrijven. :D

En voortaan doe ik het wel in dat topic. :)
Crack the following and we will get back to you: !1!llssod000;;
  zondag 31 maart 2019 @ 22:13:10 #42
484383 Eendenkooi
homeopathisch onverdund
pi_185960397
Je kan beter eerst b doen en dan pas a. Observatie die verder helpt is dat de loodlijn van D naar AB het lijnstuk AB precies in 2 gelijke delen snijdt.
pi_185960809
Waarom vraag je het niet gewoon aan je docent?
  maandag 1 april 2019 @ 13:58:49 #44
359498 Enfatruskiloin
En-fa-tru-skie-lé-wan
pi_185969665
4+4+5+*

* = AE+AB = 25

Dus omtrek 38
MV NS FR DS MD
  maandag 1 april 2019 @ 14:08:33 #45
359498 Enfatruskiloin
En-fa-tru-skie-lé-wan
pi_185969822
quote:
0s.gif Op woensdag 27 maart 2019 16:45 schreef Riparius het volgende:

[..]

Zie jij de fout in mijn berekening?
MV NS FR DS MD
pi_185970596
quote:
0s.gif Op maandag 1 april 2019 14:08 schreef Enfatruskiloin het volgende:

[..]

Zie jij de fout in mijn berekening?
Ja, je begrijpt de stelling van Pythagoras niet.

Je hebt

EA˛ + AB˛ = BE˛ = 25

maar daar volgt uiteraard niet uit dat de som van de lengtes van EA en AB gelijk zou zijn aan 25.

(We hebben EA = 1⅖ en AB = 4⅘ dus EA + AB = 6⅕)
abonnement Unibet Coolblue Bitvavo
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')