abonnement Unibet Coolblue Bitvavo
pi_165003752
quote:
0s.gif Op donderdag 1 september 2016 07:11 schreef Lyrebird het volgende:

[..]

Zeg, een histogram van alle 500.000 datapunten van de jonge proefpersonen ziet er zo uit:

[ afbeelding ]

In Origin zit een test om te testen of de verdeling normaal is, en dat is ie niet, dus de regel van gemiddelde + 2* stdev gaat hier niet op. Niet erg, want met de verdeling is het een koud kunstje om de verschillende cut-offs te vinden.

p95 = 36.4
p99 = 48.6
p99.9 = 67.8

Als ik de p95 loslaat op een plaatje gemaakt van een oudere proefpersoon, dan kan tegen de 100% (!) van alle datapunten boven die cut-off liggen. Dat is op zich goed nieuws, want dat betekent dat bijna alle datapunten in het plaatje 'suspect' zijn, omdat datapunten met zulke hoge waardes niet voorkomen bij jonge proefpersonen. Wat ik minder vind, is dat het hele plaatje van zo'n oude proefpersoon 'grijs' kleurt na het toepassen van de p95,waardoor je eigenlijk niets meer ziet. Ook vraag ik me af hoe sterk deze analyse is, want 5% van de datapunten die van de jonge groep afkomstig is, liggen ook boven de p95. Zelfs bij de p99 kleurt erg veel grijs. p99.9 lijkt me daarom redelijker:

[ afbeelding ]

Mijn volgende vraag is nu wat normaal is om als cut-off te gebruiken. Met mijn engineering-achtergrond gebruik ik het liefst de hoogste waarde (p99.9), want zelfs bij deze cut-off is het overduidelijk dat sommige oudere proefpersonen (de 5 die ik rood had gekleurd) hele andere data hebben dan de jonge proefpersonen. En bij de andere vijf oudere proefpersonen krijg je percentages boven de cut-off die erg lijken op de jonge populatie, dus daar is niets mee aan de hand. Ook prima.

Iets zegt me dat statistici liever het 99e percentiel gebruiken, of zelfs het 95e percentiel. Met die laatste ga je aggressief pixels die misschien niet zo suspect zijn als suspect aangeven, terwijl die bij gebruik van het 99.9e percentiel als cut-off als normaal worden gezien (terwijl ze dat misschien niet zijn). Wat is wijsheid?
Dit wordt ook wel sensitiviteit en specificiteit genoemd. In welke mate is een test geschikt om de positieven correct te selecteren, en de negatieven (niet) te selecteren. En eigenlijk ontbreekt er bij jou ook een soort van ankerwaarde, of externe maat waaraan je kunt toetsen of je test geschikt is (of eigenlijk meer: bij welke cut off je het beste resultaat hebt). Dat zou je kunnen achterhalen door die vijf geselecteerden uit te nodigen voor een medisch onderzoek, om even in dit voorbeeld te blijven.

Welke cut-off je gebruikt, moet je dus relateren aan een extern criterium.
'Expand my brain, learning juice!'
<a href="http://www.last.fm/user/crossover1" rel="nofollow" target="_blank">Last.fm</a>
pi_165004264
Sensitivity & specificity... That rings a bell. Ik ga me eens inlezen.
Good intentions and tender feelings may do credit to those who possess them, but they often lead to ineffective — or positively destructive — policies ... Kevin D. Williamson
pi_165004314
Btw, over die 5 mensen uitnodigen voor een extra onderzoek: dat is al uitgevoerd, en iedereen in deze studie was zo fit als een hoentje. De meting die we gedaan hebben, laat dus een variabele zien die pre-klinisch is, maar die wel de eerste (meetbare) stap in een heel vervelend proces is.
Good intentions and tender feelings may do credit to those who possess them, but they often lead to ineffective — or positively destructive — policies ... Kevin D. Williamson
pi_166190364
Vraagje m.b.t. SPSS: Voor een (pilot)onderzoek ben ik wat gegevens aan het invoeren op SPSS. Hier is o.a. een N(P)RS bij aanwezig (Numeric pain rating scale). Dit een schaal van 1 t/m 10 waarbij mensen hun pijn kunnen aangeven/scoren.

Geldt dit als een 'scale' of als ordinaal? Er is dus wel een bepaalde rangorde (1 t/m 10) in aanwezig, maar het is geen gegeven dat mensen na een behandeling bijv. minder pijn hebben dan ervoor.
pi_166190404
quote:
0s.gif Op dinsdag 25 oktober 2016 12:16 schreef nickhguitar het volgende:
Er is dus wel een bepaalde rangorde (1 t/m 10) in aanwezig, maar het is geen gegeven dat mensen na een behandeling bijv. minder pijn hebben dan ervoor.
Als je het zoals voor de komma interpreteert dan mag het schaal zijn, dat komt soms al voor bij slechts 5 categorieën.
pi_166190440
quote:
0s.gif Op dinsdag 25 oktober 2016 12:18 schreef MCH het volgende:

[..]

Als je het zoals voor de komma interpreteert dan mag het schaal zijn, dat komt soms al voor bij slechts 5 categorieën.
Maar klopt het dan dat hier in principe 2 mogelijkheden beide goed zijn? Valt voor beide wel iets te zeggen toch?
pi_166190463
Ik zou zeggen schaal. Lijkt me ook niet heel handig om hier een choice model met tien categorieën in de afhankelijke variabele op te nemen.

Anders zou het zijn als die cijfers voor categorieën (slecht, slechter, valt mee, goed etc.) zouden staan, aangezien de verschillen tussen categorieën dan niet even groot zijn.
pi_166190471
quote:
0s.gif Op dinsdag 25 oktober 2016 12:20 schreef nickhguitar het volgende:

[..]

Maar klopt het dan dat hier in principe 2 mogelijkheden beide goed zijn? Valt voor beide wel iets te zeggen toch?
Bedoel je dat ze een 5 voor de behandeling anders beoordelen als een 5 na de behandeling? In principe kun je met interval variabelen ook 'meer'.

[ Bericht 0% gewijzigd door #ANONIEM op 25-10-2016 12:21:53 ]
pi_166190502
quote:
1s.gif Op dinsdag 25 oktober 2016 12:21 schreef Kaas- het volgende:
Schaal. Lijkt me ook niet heel handig om hier een choice model met tien categorieën in de afhankelijke variabele op te nemen.
Hm. valt ook wat voor te zeggen idd.

quote:
0s.gif Op dinsdag 25 oktober 2016 12:21 schreef MCH het volgende:

[..]

Bedoel je dat ze een 5 voor de behandeling anders beoordelen als een 5 na de behandeling? In principe kun je met interval variabelen ook 'meer'.
Ons onderzoekje is vrij simpel. We meten een pijnscore voor de behandeling, passen een behandeling toe en meten dan weer een pijnscore. In theorie kan iemand voor de behandeling weinig pijn hebben en na de tijd heel veel.
pi_166190524
quote:
0s.gif Op dinsdag 25 oktober 2016 12:16 schreef nickhguitar het volgende:
maar het is geen gegeven dat mensen na een behandeling bijv. minder pijn hebben dan ervoor.
Waarom is dat relevant voor deze vraag?
pi_166190545
quote:
0s.gif Op dinsdag 25 oktober 2016 12:23 schreef nickhguitar het volgende:

[..]

Hm. valt ook wat voor te zeggen idd.

[..]

Ons onderzoekje is vrij simpel. We meten een pijnscore voor de behandeling, passen een behandeling toe en meten dan weer een pijnscore. In theorie kan iemand voor de behandeling weinig pijn hebben en na de tijd heel veel.
Ja dat kan. En je gaat dus meten of het ook zo is. Die variatie ben je juist naar op zoek. :P
pi_166190596
quote:
1s.gif Op dinsdag 25 oktober 2016 12:24 schreef Kaas- het volgende:

[..]

Ja dat kan. En je gaat dus meten of het ook zo is. Die variatie ben je juist naar op zoek. :P
En zou jij dus scale of ordinaal gebruiken voor de pijnschaal?
pi_166190648
quote:
0s.gif Op dinsdag 25 oktober 2016 12:27 schreef nickhguitar het volgende:

[..]

En zou jij dus scale of ordinaal gebruiken voor de pijnschaal?
Schaal.

Wat is je n eigenlijk? Die mag ook wel berehoog zijn om bij een ordinale schaal uberhaupt significante resultaten te krijgen, aangezien de verdeling over die categorieën ook niet gelijkmatig zal zijn.
pi_166190678
quote:
1s.gif Op dinsdag 25 oktober 2016 12:29 schreef Kaas- het volgende:

[..]

Schaal.

Wat is je n eigenlijk? Die mag ook wel berehoog zijn om bij een ordinale schaal uberhaupt significante resultaten te krijgen, aangezien de verdeling over die categorieën ook niet gelijkmatig zal zijn.
N is het aantal mensen die meedoen neem ik aan? We mikken op 16. Dat is ook het minimale wat benodigd is voor deze pilot.
pi_166190717
Zou dus gewoon een simpele OLS doen op schaalvariabele pijn met B0 + B1x[dummy voor behandeling] + controleshizzle.
pi_166190749
quote:
0s.gif Op dinsdag 25 oktober 2016 12:30 schreef nickhguitar het volgende:

[..]

N is het aantal mensen die meedoen neem ik aan? We mikken op 16. Dat is ook het minimale wat benodigd is voor deze pilot.
Oh joh. Dude.

Dan zou ik gewoon de plusjestest doen. Ik weet niet zeker of het zo heet, maar gewoon plusjes (of minnetjes) tellen na de behandeling en checken of het significant is in een bepaalde richting.
pi_166190806
quote:
10s.gif Op dinsdag 25 oktober 2016 12:34 schreef Kaas- het volgende:

[..]

Oh joh. Dude.

Dan zou ik gewoon de plusjestest doen. Ik weet niet zeker of het zo heet, maar gewoon plusjes (of minnetjes) tellen na de behandeling en checken of het significant is in een bepaalde richting.
Ik ben echt de grootste leek op dit gebied wat uberhaupt mogelijk is. We hebben van de opleiding uit een soort 'draaiboek' gekregen waarin we gaan kijken of de data normaal verdeeld is en aan de hand daarvan gaan we een aantal testen doen.
pi_166225624
quote:
0s.gif Op dinsdag 25 oktober 2016 12:37 schreef nickhguitar het volgende:

[..]

Ik ben echt de grootste leek op dit gebied wat uberhaupt mogelijk is. We hebben van de opleiding uit een soort 'draaiboek' gekregen waarin we gaan kijken of de data normaal verdeeld is en aan de hand daarvan gaan we een aantal testen doen.
Met 16 datapunten is het lastig aantonen of iets normaal verdeeld is.
pi_166229844
Waarom niet gewoon paired t-test?
Op dinsdag 1 november 2016 00:05 schreef JanCees het volgende:
De polls worden ook in 9 van de 10 gevallen gepeild met een meerderheid democraten. Soms zelf +10% _O-
pi_166574587
Ik wil een lineaire OLS-regressie uitvoeren met behulp van Excel. Ik ben in het bezit van twee data-variabelen: de gemiddelde (log) inflatie en de interest.

Wat ik mij dus afvraag, is het volgende: hoe weet ik of en wanneer ik data transformaties (log-variabelen of lag-variabelen aanmaken) moet uitvoeren?
pi_166574829
quote:
0s.gif Op donderdag 10 november 2016 23:33 schreef Super-B het volgende:
Ik wil een lineaire OLS-regressie uitvoeren met behulp van Excel. Ik ben in het bezit van twee data-variabelen: de gemiddelde (log) inflatie en de interest.

Wat ik mij dus afvraag, is het volgende: hoe weet ik of en wanneer ik data transformaties (log-variabelen of lag-variabelen aanmaken) moet uitvoeren?
Lag variabele gebruiken ligt meer aan je onderzoeksvraag denk ik, dat is geen datatransformatie.
  † In Memoriam † vrijdag 11 november 2016 @ 00:05:20 #82
230491 Zith
pls tip
pi_166575367
Dit soort analyses vragen eigenlijk altijd om autoregressie, omdat de huidige interest/inflatie 99% afhankelijk is van de vorige*, dus inderdaad lags gebruiken. In programmas als STATA heb je methodes om te analyseren hoever je terug in de tijd moet gaan (bijv. is het seizoen/cyclus gebonden).

Maar goed.. in Excel... heb je de Analysis Toolpak? Zo ja:


Ik zou dan reeks lags toevoegen om te kijken of er bepaalde lags significant zijn, als je ziet dat lag t-7 significant is dan kan je tot t-7 gaan...Het is allemaal niet zo netjes maar goed.. 2 variabelen en excel.

By the way, je lost er je niet altijd je endogeneity (/reversed causality) probleem mee op.

Logs/NatLog zou ik niet zo snel naar grijpen. Dat is relevanter als er een groter verschil zit tussen de observaties (bijv.. ln1000 en ln1,000,000 = 6.9 en 13,8), nu ga je (lijkt me) van 2.2% naar 2.1%

*overdreven, soms.

[ Bericht 6% gewijzigd door Zith op 11-11-2016 00:10:58 ]
I am a Chinese college students, I have a loving father, but I can not help him, he needs to do heart bypass surgery, I can not help him, because the cost of 100,000 or so needed, please help me, lifelong You pray Thank you!
pi_166575672
quote:
0s.gif Op vrijdag 11 november 2016 00:05 schreef Zith het volgende:
Dit soort analyses vragen eigenlijk altijd om autoregressie, omdat de huidige interest/inflatie 99% afhankelijk is van de vorige*, dus inderdaad lags gebruiken. In programmas als STATA heb je methodes om te analyseren hoever je terug in de tijd moet gaan (bijv. is het seizoen/cyclus gebonden).

Maar goed.. in Excel... heb je de Analysis Toolpak? Zo ja:


Ik zou dan reeks lags toevoegen om te kijken of er bepaalde lags significant zijn, als je ziet dat lag t-7 significant is dan kan je tot t-7 gaan...Het is allemaal niet zo netjes maar goed.. 2 variabelen en excel.

By the way, je lost er je niet altijd je endogeneity (/reversed causality) probleem mee op.

Logs/NatLog zou ik niet zo snel naar grijpen. Dat is relevanter als er een groter verschil zit tussen de observaties (bijv.. ln1000 en ln1,000,000 = 6.9 en 13,8), nu ga je (lijkt me) van 2.2% naar 2.1%

*overdreven, soms.
Ik heb de Analysis Toolpak ja. Mijn stappenplan zag er als volgt uit:

1. Eventuele data-transformaties

2. Test voor autocorrelatie (Residual Plot, Lagrange Multiplier Test)

3. Test voor heteroskedasticiteit

4. T-test/F-Test & OLS-regressie
  † In Memoriam † vrijdag 11 november 2016 @ 00:24:53 #84
230491 Zith
pls tip
pi_166575711
Als het mogelijk is binnen excel kan je White's S/E gebruiken als je vindt dat er heteroskedasticity is (heteroskedasticity robust standard errors).
I am a Chinese college students, I have a loving father, but I can not help him, he needs to do heart bypass surgery, I can not help him, because the cost of 100,000 or so needed, please help me, lifelong You pray Thank you!
pi_166575859
quote:
0s.gif Op vrijdag 11 november 2016 00:24 schreef Zith het volgende:
White's S/E
?
  † In Memoriam † vrijdag 11 november 2016 @ 08:36:33 #86
230491 Zith
pls tip
pi_166577416
quote:
0s.gif Op vrijdag 11 november 2016 00:35 schreef Super-B het volgende:

[..]

?
quote:
(heteroskedasticity robust standard errors).
Dat is een manier om de standard errors zo te berekenen dat het geen last ondervindt van de heteroskedasticity (dat de afstand van error tot gemiddelde niet random is). Bij stata doe je vce(robust) aan het einde maar hoe het in excel moet weet ik niet :P

https://en.wikipedia.org/(...)tent_standard_errors
I am a Chinese college students, I have a loving father, but I can not help him, he needs to do heart bypass surgery, I can not help him, because the cost of 100,000 or so needed, please help me, lifelong You pray Thank you!
pi_166586528
quote:
0s.gif Op vrijdag 11 november 2016 08:36 schreef Zith het volgende:

[..]

[..]

Dat is een manier om de standard errors zo te berekenen dat het geen last ondervindt van de heteroskedasticity (dat de afstand van error tot gemiddelde niet random is). Bij stata doe je vce(robust) aan het einde maar hoe het in excel moet weet ik niet :P

https://en.wikipedia.org/(...)tent_standard_errors

Ik heb een beetje zitten knoeien met de data in Excel en uit mijn residual plot komt het volgende uitrollen:



Is er sprake van autocorrelatie? Mijn data betreft een time-series.
  † In Memoriam † vrijdag 11 november 2016 @ 19:59:40 #88
230491 Zith
pls tip
pi_166588879
Ik zou toch vast blijven houden aan de durbin watson of lagrange multiplier, zie

http://higheredbcs.wiley.(...)f_econometrics3e.pdf

Hoofdstuk Detecting Autocorrelation

(net dit boek gevonden, ziet er uit als een top boek voor je onderzoek :) )
I am a Chinese college students, I have a loving father, but I can not help him, he needs to do heart bypass surgery, I can not help him, because the cost of 100,000 or so needed, please help me, lifelong You pray Thank you!
pi_166589143
quote:
0s.gif Op vrijdag 11 november 2016 19:59 schreef Zith het volgende:
Ik zou toch vast blijven houden aan de durbin watson of lagrange multiplier, zie

http://higheredbcs.wiley.(...)f_econometrics3e.pdf

Hoofdstuk Detecting Autocorrelation

(net dit boek gevonden, ziet er uit als een top boek voor je onderzoek :) )

Durbin H's toch ipv Durbin Watson:

In the presence of a lagged criterion variable among the predictor variables, the
DW statistic is biased towards finding no autocorrelation. For such models Durbin
(1970) proposed a statistic (Durbin’s h)

:@

[ Bericht 6% gewijzigd door #ANONIEM op 11-11-2016 20:14:20 ]
  † In Memoriam † vrijdag 11 november 2016 @ 23:00:01 #90
230491 Zith
pls tip
pi_166594502
quote:
0s.gif Op vrijdag 11 november 2016 20:13 schreef MCH het volgende:

[..]

Durbin H's toch ipv Durbin Watson:

In the presence of a lagged criterion variable among the predictor variables, the
DW statistic is biased towards finding no autocorrelation. For such models Durbin
(1970) proposed a statistic (Durbin’s h)

:@
Aight! Weer wat geleerd :) Nog nooit een autoregressive model gemaakt, alleen wat over gehoord tijdens de colleges...
I am a Chinese college students, I have a loving father, but I can not help him, he needs to do heart bypass surgery, I can not help him, because the cost of 100,000 or so needed, please help me, lifelong You pray Thank you!
abonnement Unibet Coolblue Bitvavo
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')