Maar als bij de eerste schaal alle respondenten bij de 8 vragen "zeer eens" hebben ingevuld, en bij de tweede schaal alle respondenten "zeer oneens" zijn, dan is dat niet dezelfde mate van invloed op de totale schaal?quote:Op donderdag 7 augustus 2014 12:04 schreef dotKoen het volgende:
[..]
Dat weet je al: ~8/42
[..]
Dit lijkt meer op de vraag die je moet stellen inderdaad.
Welke kant de score op gaat hoort niet de mate van invloed te bepalen. Hoe bereken je die totale schaal? Alle scores van de Likerts bij elkaar opgeteld? De score op de subschalen omgerekend naar percentages en die bij elkaar opgeteld?quote:Op donderdag 7 augustus 2014 12:08 schreef LK. het volgende:
[..]
Maar als bij de eerste schaal alle respondenten bij de 8 vragen "zeer eens" hebben ingevuld, en bij de tweede schaal alle respondenten "zeer oneens" zijn, dan is dat niet dezelfde mate van invloed op de totale schaal?
quote:Op donderdag 7 augustus 2014 12:17 schreef dotKoen het volgende:
[..]
Welke kant de score op gaat hoort niet de mate van invloed te bepalen. Hoe bereken je die totale schaal? Alle scores van de Likerts bij elkaar opgeteld? De score op de subschalen omgerekend naar percentages en die bij elkaar opgeteld?
De totale schaal is inderdaad de som van de 5 schalen.quote:Op donderdag 7 augustus 2014 12:17 schreef dotKoen het volgende:
[..]
Welke kant de score op gaat hoort niet de mate van invloed te bepalen. Hoe bereken je die totale schaal? Alle scores van de Likerts bij elkaar opgeteld? De score op de subschalen omgerekend naar percentages en die bij elkaar opgeteld?
Np, ik heb dit helaas zelf ook veel te vaak meegemaaktquote:Op woensdag 6 augustus 2014 23:47 schreef Wallcrawler-GP het volgende:
[..]
[..]
Super bedankt! Met zoeken en vervangen de punten voor komma's vervangen en daarna kon ik de variabele wel numeriek maken:)
Wel gek want in excel (het originele bestand) stonden alle variabelen gelijk. Allemaal met komma. Alleen voor deze ene variabele maakt spss er een punt van. Maar geen punt, het is opgelost. Bedankt Oompaloompa!
Maar merkwaarde bestaat toch uit die 5 schalen?quote:Op donderdag 7 augustus 2014 11:01 schreef LK. het volgende:
[..]
Volgens mij heb ik het fout uitgelegd dan. Ik heb inderdaad 42 vragen, die zijn opgedeeld in 5 schalen (merkidentiteit, merkbetekenis, merkrespons, merkrelatie en content). Nu wil ik een regressie-analyse inzetten om erachter te komen in hoeverre elke schaal van invloed is op de afhankelijke variabele (merkmeerwaarde) en welke schaal het meest van invloed is.
Maar omdat de 5 schalen samen de afhankelijke variabele vormen, geeft SPSS de foutmelding "the fit is perfect". Vandaar mijn vraag of ik op een andere manier kan aantonen in hoeverre de 5 schalen van invloed zijn![]()
Hopelijk is het zo wat duidelijker
Okay, bedankt voor je reactie!quote:Op donderdag 7 augustus 2014 19:53 schreef oompaloompa het volgende:
[..]
Np, ik heb dit helaas zelf ook veel te vaak meegemaakt
[..]
Maar merkwaarde bestaat toch uit die 5 schalen?
Dus je hebt 42 vragen die 5 scchalen vormen. Laten we even voor het gemak 8 vragen per schaal nemen. Daarna bestaat je afhankelijke uit de som van de 5 schalen. Dat betekent dus dat elke vraag voor 1/40 invloed op merkwaarde heeft (of elke schaal 20%). Je vraag klopt niet, en daarom geeft SPSS errors. Je beslist namelijk eerst zelf hoeveel invloed elke schaal op merkwaarde heeft omdat je het concept merkwaarde definieert als een combinatie van de schalen.
Hmm dat wordt moeilijk aangezien je merkwaarde hebt gedefinieerd als de combinatie van die schalen. Je zou wel bv kunnen kijken hoe de subschalen onderling verband met elkaar houden en of demografische gegevens bv geslacht / leeftijd invloed hebben. Maar als je wilt weten hoe de schalen samenhangen met merkwaarde had je merkwaarde op een andere, independent, manier moeten meten.quote:Op donderdag 7 augustus 2014 21:28 schreef LK. het volgende:
[..]
Okay, bedankt voor je reactie!
Hoe moet ik het nu oplossen om met mijn verkregen data uit het surveyonderzoek alsnog iets over de merkmeerwaarde te kunnen zeggen?
En een stap terugnemen en de schalen op een andere manier indelen is geen optie?quote:Op vrijdag 8 augustus 2014 17:15 schreef oompaloompa het volgende:
[..]
Hmm dat wordt moeilijk aangezien je merkwaarde hebt gedefinieerd als de combinatie van die schalen. Je zou wel bv kunnen kijken hoe de subschalen onderling verband met elkaar houden en of demografische gegevens bv geslacht / leeftijd invloed hebben. Maar als je wilt weten hoe de schalen samenhangen met merkwaarde had je merkwaarde op een andere, independent, manier moeten meten.
Ik denk dat het grootste punt is dat je enkel afhankelijke variabelen hebt. Doordat de vijf schalen samen de afhankelijke variabelen vormen, zijn ze zelf ook afhankelijke variabelen. Als je merkwaarde ook nog op een andere manier kunt meten, dan kun je de relatie tussen de vijf schalen in je vragenlijst en merkwaarde meten. Als je dat niet hebt is de vraag of je een of meerdere onafhankelijke variabelen hebt in je data waar je iets mee kunt.quote:Op zaterdag 9 augustus 2014 11:16 schreef LK. het volgende:
[..]
En een stap terugnemen en de schalen op een andere manier indelen is geen optie?
Onderling verband met de verschillende schalen is niet persé wat ik zoek namelijk. Ik wil weten welk aspect van merkmeerwaarde de respondenten het belangrijkst vinden, zodat de organisatie zich daar op kan focussen. En als ik de resultaten bekijk, dan zie ik dat de meest positieve antwoorden zijn ingevuld bij de schaal content. Hoe laat ik dit zien door middel van een test?
Is er geen andere toets (Mann-Whitney U Test / Pearson R / Anova ??) die ik hiervoor kan inzetten?
Want als het niet lukt via SPSS, dan lijkt het me beter om gewoon de survey resultaten te analyseren en zelf grafieken te maken over hoe positief (of negatief) de respondenten de vragen uit de verschillende vragen hebben beantwoord.
Je probleem is geen probleem van de toets maar, no offense, van een verkeerd opgezet onderzoek. De vraag die je wilt beantwoorden kun je niet beantwoorden met de data die je verzameld hebt.quote:Op zaterdag 9 augustus 2014 11:16 schreef LK. het volgende:
[..]
En een stap terugnemen en de schalen op een andere manier indelen is geen optie?
Onderling verband met de verschillende schalen is niet persé wat ik zoek namelijk. Ik wil weten welk aspect van merkmeerwaarde de respondenten het belangrijkst vinden, zodat de organisatie zich daar op kan focussen. En als ik de resultaten bekijk, dan zie ik dat de meest positieve antwoorden zijn ingevuld bij de schaal content. Hoe laat ik dit zien door middel van een test?
Is er geen andere toets (Mann-Whitney U Test / Pearson R / Anova ??) die ik hiervoor kan inzetten?
Want als het niet lukt via SPSS, dan lijkt het me beter om gewoon de survey resultaten te analyseren en zelf grafieken te maken over hoe positief (of negatief) de respondenten de vragen uit de verschillende vragen hebben beantwoord.
Ik snap niet zo goed wat je hier doet. Waarom zouden die antwoorden gelijk verdeeld moeten zijn? Waarom haal je de gelijk verdeelde zinner er uit?quote:Op zondag 10 augustus 2014 12:25 schreef nickk het volgende:
Ik heb voor mijn scriptie onderzoek gedaan naar de volgorde van persoonlijk voornaamwoorden in het Nieuwgrieks door middel van het afnemen van een enquête. Ik heb 5 algemene vragen gesteld om te bepalen of de respondenten tot de doelgroep behoren (of dat de enquête eventueel afgebroken moet worden), uit welke regio van Griekenland de respondent afkomstig is en wat het geslacht en de leeftijd van de respondent is. Vervolgens heb ik 19 zinnen voorgelegd, waarbij de respondenten op een schaal van 1 tot 4 konden kiezen (ja, waarschijnlijk wel, waarschijnlijk niet, nee) in hoeverre het mogelijk was die zinnen te horen in hun omgeving.
Uiteindelijk heeft mijn enquête 92 respondenten opgeleverd. Een voldoende aantal binnen de taalwetenschap. Met een χ2-toets heb ik vervolgens per vraag bepaald in hoeverre de verdeling over de antwoordmogelijkheden willekeurig is (verdeling 23-23-23-23).
Er is geen hypothese die getoetst kan worden, omdat er slechts twee halve alinea's over geschreven zijn door twee verschillende auteurs en hun beweringen lijnrecht tegenover elkaar staan. Van de 19 zinnen hield ik er 14 over met p<0,01 2 met 0,01<p<0,05. 1 zin met 0,05<p<0,1 en 2 met p>0,1. Ik heb besloten alledrie deze zinnen buiten het onderzoek te houden.
Welke insignificantie? In snap nog steeds niet helemaal de bedoeling van de chi-square toets maar 3/19 n.s. is niet vreemd en hoeft ook niet verklaard te worden, het is statistisch vrij logisch dat niet altijd alles significant verschilt zelfs wanneer er in de wekelijkheid wel zo'n verband is.quote:Ik heb met een ongepaarde t-toets gekeken of er een significant verschil zat tussen mannen en vrouwen om zo deze insignificantie te kunnen verklaren, maar dat leverde niets op. Ook dit verschil was insignificant.
De beoordeling van de zinnen is een afhankelijke variabele dus je kunt gewoon een paired t-test doen.quote:Met de mediaan heb ik vervolgens bepaald of een zin wel of niet aangenomen kan worden als acceptabel. Mediaan 1-2 is acceptabel en mediaan 3-4 is niet acceptabel. Uiteindelijk blijkt dat beide volgorden met meerdere zinnen acceptabel zijn. Van de 19 zinnen kon ik in verband met het wegvallen van een aantal zinnen door gebrek aan significantie 6 paren vormen. Bij het bekijken van de gemiddelden zag ik dat er toch wat verschillen in het gemiddelde zaten die op een voorkeur voor de ene of de andere volgorde zouden kunnen wijzen.
Hoe kan ik bepalen of er tussen twee onafhankelijke (?) variabelen met dezelfde schaalverdeling van 1 tot 4 een significant verschil bestaat? Ik had in eerste instantie gedacht aan een gepaarde t-toets, maar volgens mij is deze alleen voor afhankelijke variabelen of heb ik dat mis?
Je kunt in spss gewoon negatieve waardes gebruiken. Als je een schaal gebruikt hoef je geen ordinale schaal aan te geven maar kun je gewoon continu/interval gebruiken.quote:Op donderdag 21 augustus 2014 01:10 schreef Natoo het volgende:
Hallo allemaal!
Ik ben bezig met mijn onderzoek naar de kwaliteit van de Nederlandse kinderopvang en de rol die pedagogisch medewerkers (pm'ers) hierin spelen. De constructen in de vragenlijst worden zowel op een directe als een indirecte manier gemeten. Bij de indirecte manier worden telkens twee vragen gesteld (die elk een andere antwoordschaal hebben) en de score van deze items worden met elkaar vermenigvuldigd.
Bijvoorbeeld het construct "sociale norm" wordt op een indirecte manier gemeten door:
- vraag 1: "mijn collega's werken... [Niet -3 -2 -1 0 +1 +2 +3 Wel]... volgens de pedagogische visie van de instelling"
x
- vraag 2: "doen wat andere collega's ook doen is belangrijk voor mij" [Zeer oneens 1 2 3 4 5 6 7 Zeer eens].
+ vraag3 x vraag4, etc. etc.
Dus: het construct "sociale norm" = (vraag1 x vraag2) + (vraag3 x vraag4) + (etc. etc.). etc.
Nou vraag ik me af hoe ik deze items in moet voeren in mijn variable view van spss. Ik heb ze ingevoerd als ordinale variabelen en wilde daarbij de values toevoegen. Ik weet niet goed hoe ik dit aan moet pakken. Mogen de values in spss ook negatieve waarden bevatten? Of kan dit later problemen veroorzaken met bepaalde berekeningen?
En kan ik spss ook een variabele aanmaken die de totale constructscore berekent/weergeeft? Zo ja, hoe?
Dank voor je snelle reactie! Ik begrijp niet helemaal waarom het dan continu/interval (dus "scale") is. Want in principe gaat het toch om ordinale variabelen als "zeer oneens", "een beetje oneens", etc.?quote:Als je een schaal gebruikt hoef je geen ordinale schaal aan te geven maar kun je gewoon continu/interval gebruiken.
Helaas hoort dit bij het type vragenlijst dat ik heb gebruikt.quote:Heb je zelf bedacht om die twee variabelen te vermeningvuldigen of is dat standaard gebruik? Het is namelijk nogal vreemd om dat te doen omdat je daarmee statistische verbanden creeert waarvan je niet weet of die eigenlijk representatief zijn voor datgene dat je probeert te meten. .
Wat je zegt klopt officieel, maar het is gebleken dat als je likert-type schalen gebruikt met 5 of meer opties (en je schaal neit extreem vreemd is) je eigenlijk geen onderschatte p-waardes krijgt met parametrische (t-test/anova) toetsen.En aangezien parametrische toetsen sterker zijn en gemakkelijker te interpreteren/vertalen naar de echte wereld zou ik die gebruiken. Er zijn best veel papers over geschreven als je een bron nodig hebt om het te beargumenterenquote:Op donderdag 21 augustus 2014 19:16 schreef Natoo het volgende:
[..]
Dank voor je snelle reactie! Ik begrijp niet helemaal waarom het dan continu/interval (dus "scale") is. Want in principe gaat het toch om ordinale variabelen als "zeer oneens", "een beetje oneens", etc.?
En als het een scale-variabele is, moet/kan ik dan wel gewoon values aanmaken? En zo ja, neem je dan alleen de uiteinden (dus bijvoorbeeld: "value 1 = zeer oneens" en "value 7 = zeer eens")?. Of vul ik de middelste values zelf in (bijvoorbeeld met "value 2 = oneens", "value 3 = een beetje oneens", etc.)?
[..]
Ik vind het echt een hele vreemde schaal, welke is dat? Superraar dat als je bv 0 aangeeft op vraag 1 (mijn collegas werken soms wel en soms niet volgens...) het dan niet uit zou maken of je 1 of 7 scoort op vraag 2.quote:Helaas hoort dit bij het type vragenlijst dat ik heb gebruikt.
Oja, ik begrijp het! Dankje!quote:Wat je zegt klopt officieel, maar het is gebleken dat als je likert-type schalen gebruikt met 5 of meer opties (en je schaal neit extreem vreemd is) je eigenlijk geen onderschatte p-waardes krijgt met parametrische (t-test/anova) toetsen.En aangezien parametrische toetsen sterker zijn en gemakkelijker te interpreteren/vertalen naar de echte wereld zou ik die gebruiken. Er zijn best veel papers over geschreven als je een bron nodig hebt om het te beargumenteren
Nou, ik dacht dat als je meetniveau "scale" is dat je dan eigenlijk geen values invoert.. maar dat kan dus wel? En ik begrijp niet goed hoe ik de values in moet voeren, aangezien ik alleen de uiteinden van de schaal heb.quote:Ik snap niet zo goed wat je daarna bedoelt met "values" dat zou hetzelfde zijn met ordinale interpretatie
Ja, raar is het wel! Het is de vragenlijst aangaande de Theory of Planned Behavior.. er is een manual voor ontwikkeld hoe je de vragen precies op moet stellen en hoe je ze moet scoren, en die heb ik hierbij gebruikt.quote:Ik vind het echt een hele vreemde schaal, welke is dat? Superraar dat als je bv 0 aangeeft op vraag 1 (mijn collegas werken soms wel en soms niet volgens...) het dan niet uit zou maken of je 1 of 7 scoort op vraag 2.
Hmm in mijn quote is de helft van je bericht weg. Iig die namen hoef je in spss niet aan je schaal te geven, daar kun je gewoon -3 tot +3 en 1-7 gebruiken. De anchors (helemaal wel / helemaal niet etc.) gebruik je allen in je methode-beschrijving.quote:
Oke! Dank!!quote:Iig die namen hoef je in spss niet aan je schaal te geven, daar kun je gewoon -3 tot +3 en 1-7 gebruiken. De anchors (helemaal wel / helemaal niet etc.) gebruik je allen in je methode-beschrijving.
Ik kan er iets zinnigs over zeggen maar niet op basis van de gegeven infoquote:Op donderdag 28 augustus 2014 16:28 schreef wiedeweer het volgende:
Dag allemaal,
Ik heb een vraag over een multilevel analyse, waarvan ik hoop dat iemand me kan helpen.
Ik vergelijk twee groepen met elkaar tav van het verloop van scores over de tijd. Iedere drie maanden wordt er door de personen uit de twee groepen een vragenlijst ingevuld waar een score uit komt. De looptijd is max. een jaar, maar bij sommigen is dit korter. Niet iedereen heeft evenveel vragenlijsten ingevuld, soms is er maar 1, soms 2, soms 3 of soms 4. Mijn hypothese is dat de ene groep een vrij vlak verloop heeft (maw de score op de vragenlijsten neemt in de loop van de tijd niet af) en dat de andere groep een steiler verloop heeft (maw de score op de vragenlijsten loopt in de loop van de tijd af). Nu kwam ik op een multilevelanalyse, maar kreeg ik van mijn supervisor de vraag of de tijdsvariabele gecentreerd moet worden?! Kan iemand daar voor mij op basis van deze info iets zinnigs over zeggen? Alvast heel hartelijk dank!
Gebruik je dummy-coderinig voor groep? (0-1)quote:Op zaterdag 30 augustus 2014 13:40 schreef wiedeweer het volgende:
Bedankt voor je reactie oompaloompa, ik gebruik wel tijd als deel van de interactie namelijk tijd x groep
Welke info kan ik nog geven zodat je daar iets over zou kunnen zeggen?
Dan maakt het statistisch niks uit dus zou ik gaan wat het logischt is qua interpretatiequote:
Haha! Yes! Heb ik! Dank!quote:zorg er dan trouwens wel voor dat 999 aangegeven staat als missing en niet meegenomen wordt als een score van 999!
De reden dat je een foutmelding krijgt is dat een dataframe er vanuit gaat dat elke variabele die je eraan toevoegt even lang is. Als je terugdenkt aan SPSS zou je voor 3 cases een lege cel hebben in "group 3" variabele. Wat R doet is dat melden (Hallo, je mist data!) maar de boxplot werkt gewoon (toen ik het probeerde wel in ieder geval.) Als je echt heel graag van die foutmelding af wil kun je in dit geval de reeks van group3 aanvullen met NA, NA, NA op het einde. Dat geeft een missing variable aan. Mochten de getallen van de verschillende variabelen echt bij specifieke cases horen (27, 12, 18 als scores van 1 proefpersoon bijvoorbeeld) dan moet je de NA codering op de juiste, missende waarde, plek invullen.quote:Op zondag 14 september 2014 17:00 schreef Sarasi het volgende:
Vraag! We mogen dit jaar ook R gebruiken in plaats van SPSS (wordt aangeraden als men de research master overweegt), dus daar ben ik nu eens mee aan het stoeien en het gaat aardig. Ik heb een achtergrond in python en C++, dus de command line is mij in ieder geval niet vreemd en het zelf schrijven van functies ook niet, dat scheelt. Desondanks is het toch weer best wel anders.Met veel ploeteren kom ik er wel doorheen, maar nu loop ik toch echt vast.
Ik heb drie groepen, elke groep bestaat uit een reeks getallen. Groep 1 & 2 hebben 12 getallen, groep 3 heeft er 9. Ik moet nu voor elke groep een boxplot maken en die samen laten zien in één grafiek. Ik heb elke groep als volgt ingevoerd:
> group1 <- c(27, 22, 29, 21, 19, 33, 16, 20, 24, 27, 28, 19)
> group2 <- c(12, 12, 15, 9, 20, 18, 17, 14, 14, 2, 17, 19)
> group3 <- c(18, 4, 22, 15, 18, 19, 22, 12, 12)
Een boxplot maken voor één groep is geen probleem:
> boxplot(group1, main="Boxplot", ylab="group1")
Groep 1 en 2 kan ik nog samenvoegen in één grafiek (hoewel het er wat lelijk uitziet en ik er nog wat dingen aan moet tweaken dan). Dat doe ik als volgt:
> groups12 <- data.frame(group1,group2)
> boxplot(group1,group2,data=groups12, main="Boxplot", xlab="Group", ylab="Trees")
Maar als ik probeer groep 1, 2 EN 3 samen te voegen, geeft R een error omdat de argumenten een verschillend aantal rijen hebben (12 en 9). Groep 3 aanvullen met nullen is natuurlijk geen optie.
Iemand een idee?
quote:Op donderdag 11 september 2014 19:26 schreef Natoo het volgende:
Oja.. ik begrijp dat ik ook losse items uit de schaal kan verwijderen. Maar ook alle alpha scores van "if item deleted" zijn nog te laag (< .70).
Wat je kunt doen (Ik weet niet of je dit al geprobeerd hebt) is te werken met de "if item deleted" waar je het over had. Je draait die analyse en leest uit de tabel af welk item alpha het meeste zou verhogen als deze weg zou worden gelaten. Die vraag haal je eruit, en dan doe je deze analyse nog een keer. de "alpha if item deleted" zal veranderen doordat je de analyse opnieuw doet na het verwijderen van een vraag, je kunt dus niet uitgaan van de getallen van de eerste keer dat je deze analyse deed.quote:Op donderdag 11 september 2014 20:54 schreef Natoo het volgende:
oh, volgens mij moesten wij onze alpha's boven de .70 houden..
De respondenten met missings worden eruit gelaten dacht ik? (listwise deletion).
Ik heb echter ook alpha's van .45 en .47, maar weet dus niet goed wat ik ermee aan moet..
Welke boxplot werkt er dan? Het samenvoegen van drie groepen werkt niet, als ik dat probeer krijg ik de melding:quote:Op zondag 14 september 2014 17:39 schreef Operc het volgende:
[..]
De reden dat je een foutmelding krijgt is dat een dataframe er vanuit gaat dat elke variabele die je eraan toevoegt even lang is. Als je terugdenkt aan SPSS zou je voor 3 cases een lege cel hebben in "group 3" variabele. Wat R doet is dat melden (Hallo, je mist data!) maar de boxplot werkt gewoon (toen ik het probeerde wel in ieder geval.) Als je echt heel graag van die foutmelding af wil kun je in dit geval de reeks van group3 aanvullen met NA, NA, NA op het einde. Dat geeft een missing variable aan. Mochten de getallen van de verschillende variabelen echt bij specifieke cases horen (27, 12, 18 als scores van 1 proefpersoon bijvoorbeeld) dan moet je de NA codering op de juiste, missende waarde, plek invullen.
Goede vraag. Ik zal fout hebben gekeken gok ik.quote:Op zondag 14 september 2014 17:49 schreef Sarasi het volgende:
[..]
Welke boxplot werkt er dan? Het samenvoegen van drie groepen werkt niet, als ik dat probeer krijg ik de melding:
"Error in data.frame(group1, group2, group3) :
arguments imply differing number of rows: 12, 9"
Dus hoe maak je die boxplot als je niet een dataset hebt om uit te trekken?
1 2 3 4 5 6 | group1 <- c(27, 22, 29, 21, 19, 33, 16, 20, 24, 27, 28, 19) group2 <- c(12, 12, 15, 9, 20, 18, 17, 14, 14, 2, 17, 19) group3 <- c(18, 4, 22, 15, 18, 19, 22, 12, 12, NA, NA, NA) boxplot(group1, main="Boxplot", ylab="group1") groups123 <- data.frame(group1, group2, group3) boxplot(group1,group2, group3,data=groups123, main="Boxplot", xlab="Group", ylab="Trees") |
1 | boxplot(group1,group2, group3,data="group1, group2, group3", main="Boxplot", xlab="Group", ylab="Trees") |
Ik heb het net gevonden!quote:Op zondag 14 september 2014 17:54 schreef Operc het volgende:
[..]
Goede vraag. Ik zal fout hebben gekeken gok ik.
Onderstaande code werkt in ieder geval (dan werk je met NA)
[ code verwijderd ]
Ah, mijn edit kwam te laat.quote:Op zondag 14 september 2014 17:56 schreef Sarasi het volgende:
[..]
Ik heb het net gevonden!
> boxplot(group1,group2,group3)
werkt gewoon.Niet meer als ik er specificaties achter plak, maar dat vogel ik dan straks wel weer uit...
Dank voor de hulp in ieder geval!quote:Op zondag 14 september 2014 17:57 schreef Operc het volgende:
[..]
Ah, mijn edit kwam te laat.De andere specificaties kun je er ook achter plakken (en het data=group1, 2 3 kun je weglaten inderdaad.)
Als 'x' een meting is die plaatsvindt in 3 groepen wel inderdaad. Als group 1/2/3 per proefpersoon verschillende zaken meten (bijvoorbeeld: "leeftijd", "lengte" en "schoenmaat") dan moet je de code gebruiken waar je vanmiddag mee kwam.quote:Op zondag 14 september 2014 20:43 schreef Sarasi het volgende:
Nog even feedback over mijn vorige vraag... Volgens een docent is dit de meest algemene oplossing die ook werkt voor echte grote datasets:
data <- data.frame('x' = c(1,2,3,4,5,6,7,8,9),'group'=c(1,1,1,2,2,2,3,3,3))
('x' bevat de data zelf, en 'group' de groepslabels, net als bij SPSS) dan krijg je je boxplot direct via:
boxplot(data$x ~ data$group)
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |