abonnement Unibet Coolblue Bitvavo
pi_131625289
quote:
Post hier weer al je vragen, passies, trauma's en andere dingen die je uit je slaap houden met betrekking tot de wiskunde.

Van MBO tot WO, hier is het topic waar je een antwoord kunt krijgen op je vragen. Vragen over stochastiek in het algemeen en stochastische processen & analyse in het bijzonder worden door sommigen extra op prijs gesteld!

Opmaak:
• met de [tex]-tag kun je Latexcode in je post opnemen om formules er mooier uit te laten zien (uitleg).

Links:
http://integrals.wolfram.com/index.jsp: site van Wolfram, makers van Mathematica, om online symbolische integratie uit te voeren.
http://mathworld.wolfram.com/: site van Wolfram met een berg korte wiki-achtige artikelen over wiskundige concepten en onderwerpen, incl. search.
http://functions.wolfram.com/: site van Wolfram met een berg identiteiten, gerangschikt per soort functie.
http://scholar.google.com/: Google scholar, zoek naar trefwoorden specifiek in (wetenschappelijke) artikelen. Vaak worden er meerdere versies van hetzelfde artikel gevonden, waarvan één of meer van de website van een journaal en (dus) niet vrij toegankelijk, maar vaak ook een versie die wel vrij van de website van de auteur te halen is.
http://www.wolframalpha.com Meest geavanceerde rekenmachine van het internet. Handig voor het berekenen van integralen, afgeleides, etc...

OP

Handig:
Riparius heeft ooit een PDF geschreven over goniometrische identiteiten. Deze kun je hier downloaden:
www.mediafire.com/view/?2b214qltc7m3v0d
Game on (8>
pi_131625418
quote:
0s.gif Op vrijdag 27 september 2013 19:03 schreef wiskundenoob het volgende:

[..]

Serieus ik zie het nog steeds niet.

Dat (x-3)2 nooit negatief kan zijn snap ik, maar wat heeft dit te maken met het vinden van het minimum?
Als (x −3)2 niet negatief kan zijn, wat is dan de kleinste waarde die (x −3)2 wel kan aannemen?
pi_131625478
quote:
0s.gif Op vrijdag 27 september 2013 19:22 schreef Riparius het volgende:

[..]

Als (x −3)2 niet negatief kan zijn, wat is dan de kleinste waarde die (x −3)2 wel kan aannemen?
Als je over dit hebt (x −3)2 = y dan is het 0.
pi_131625519
quote:
0s.gif Op vrijdag 27 september 2013 19:26 schreef wiskundenoob het volgende:

[..]

Als je over dit hebt (x −3)2 = y dan is het 0.
Juist. En als nu

(x − 3)2

nul als kleinste waarde heeft, dan heeft

(x − 3)2 + 4

als kleinste waarde?
pi_131625558
quote:
0s.gif Op vrijdag 27 september 2013 19:28 schreef Riparius het volgende:

[..]

Juist. En als nu

(x − 3)2

nul als kleinste waarde heeft, dan heeft

(x − 3)2 + 4

als kleinste waarde?
0+4 =4
pi_131625612
quote:
0s.gif Op vrijdag 27 september 2013 19:29 schreef wiskundenoob het volgende:

[..]

0+4 =4
Juist. Dus wat is nu het minimum van de functie

f(x) = (x − 3)2 + 4

en voor welke waarde van x wordt dit minimum bereikt?
pi_131625687
quote:
0s.gif Op vrijdag 27 september 2013 19:31 schreef Riparius het volgende:

[..]

Juist. Dus wat is nu het minimum van de functie

f(x) = (x − 3)2 + 4

en voor welke waarde van x wordt dit minimum bereikt?
3 natuurlijk, maar ik snap nog steeds niet wanneer dit zo mag.
pi_131625720
quote:
0s.gif Op vrijdag 27 september 2013 19:35 schreef wiskundenoob het volgende:

[..]

3 natuurlijk, maar ik snap nog steeds niet wanneer dit zo mag.
Welke stap niet?
pi_131625786
quote:
0s.gif Op vrijdag 27 september 2013 19:35 schreef wiskundenoob het volgende:

[..]

3 natuurlijk, maar ik snap nog steeds niet wanneer dit zo mag.
Je antwoord is niet compleet: de minimale functiewaarde is 4 en dit minimum wordt bereikt bij de waarde x = 3. Maak eens een tabelletje met wat functiewaarden van deze functie. Zet in de linkerkolom de waarde van x en in de rechterkolom de waarde van f(x). En neem voor x de gehele getallen van 0 t/m 6.
pi_131625919
quote:
0s.gif Op vrijdag 27 september 2013 19:39 schreef Riparius het volgende:

[..]

Je antwoord is niet compleet: de minimale functiewaarde is 4 en dit minimum wordt bereikt bij de waarde x = 3. Maak eens een tabelletje met wat functiewaarden van deze functie. Zet in de linkerkolom de waarde van x en in de rechterkolom de waarde van f(x). En neem voor x de gehele getallen van 0 t/m 6.
edit:

y= 8,5,4,5, 8 en 13
pi_131625955
quote:
0s.gif Op vrijdag 27 september 2013 19:36 schreef t4rt4rus het volgende:

[..]

Welke stap niet?
Alles, hoe los je dit op y=x^2 + x − 20 op hetzelfde manier?
pi_131626008
quote:
0s.gif Op vrijdag 27 september 2013 19:44 schreef wiskundenoob het volgende:

[..]

y= 8,5,4,8,1 en 4
Dat rijtje klopt niet. Voor x = 0 heb je bijvoorbeeld f(0) = (0 −3)2 + 4 = (−3)2 + 4 = 9 + 4 = 13.
pi_131626023
quote:
0s.gif Op vrijdag 27 september 2013 19:48 schreef Riparius het volgende:

[..]

Dat rijtje klopt niet. Voor x = 0 heb je bijvoorbeeld f(0) = (0 −3)2 + 4 = (−3)2 + 4 = 9 + 4 = 13.
Ik heb het veranderd klopt het nu? Ik ben alleen 0 vergeten.
pi_131626029
quote:
0s.gif Op vrijdag 27 september 2013 19:46 schreef wiskundenoob het volgende:

[..]

Alles, hoe los je dit op y=x^2 + x − 20 op hetzelfde manier?
Lees mijn eerdere post...
  † In Memoriam † vrijdag 27 september 2013 @ 19:52:12 #15
91830 MaximusTG
pi_131626110
Als je het niet snapt zo, bepaal dan gewoon de afgeleide en kijk wanneer die 0 is.. De x-waarde die daar uitkomt vul je in de oorspronkelijke functie in en klaar.

Dus y=x^2 + x − 20

y'= 2x+1

2x+1 = 0, x = -.5

Dat invullen geeft (-1/2^2-1/2-20)
= 1/4-2/4-80/4=-81/4
pi_131626153
quote:
0s.gif Op vrijdag 27 september 2013 19:46 schreef wiskundenoob het volgende:

[..]

Alles, hoe los je dit op y=x^2 + x − 20 op hetzelfde manier?
Dat heb ik al aangegeven: kwadraatafsplitsing. Dan krijg je:

f(x) = (x + ½)2 − (½)2 − 20

en dus

f(x) = (x + ½)2 − 81/4

Deze functie neemt dus een minimum aan van −81/4 = −20¼ bij x = −1/2.

[ Bericht 1% gewijzigd door Riparius op 27-09-2013 20:00:32 ]
pi_131626171
quote:
0s.gif Op vrijdag 27 september 2013 19:52 schreef MaximusTG het volgende:
Als je het niet snapt zo, bepaal dan gewoon de afgeleide en kijk wanneer die 0 is.. De x-waarde die daar uitkomt vul je in de oorspronkelijke functie in en klaar.
Nee. De vragensteller heeft geen flauwe notie van differentiaalrekening.
  † In Memoriam † vrijdag 27 september 2013 @ 19:55:51 #18
91830 MaximusTG
pi_131626260
quote:
0s.gif Op vrijdag 27 september 2013 19:48 schreef wiskundenoob het volgende:

[..]

Ik heb het veranderd klopt het nu? Ik ben alleen 0 vergeten.
Ja, zo klopt het. De bedoeling was dat je zag dat de term (x − 3)2 bepalend is voor het verloop van de functie en ervoor zorgt dat de functie bij x = 3 een minimum bereikt.
pi_131626666
quote:
0s.gif Op vrijdag 27 september 2013 19:53 schreef Riparius het volgende:

[..]

Dat heb ik al aangegeven: kwadraatafsplitsing. Dan krijg je:

f(x) = (x + ½)2 − (½)2 − 20

en dus

f(x) = (x + ½)2 − 81/4

Deze functie neemt dus een minimum aan van −81/4 = −20¼ bij x = −1/2.
Nvm ik weet het alweer!

[ Bericht 2% gewijzigd door wiskundenoob op 27-09-2013 20:18:06 ]
pi_131626939
quote:
0s.gif Op vrijdag 27 september 2013 20:11 schreef wiskundenoob het volgende:

[..]

Wacht hoe kom je weer aan de tweede regel. Ik dacht dat je dit bedoelde (x-5)(x-4)
Kwadraatafsplitsing. Dat heb ik afgelopen zomer uitvoerig met je behandeld. Lees de oude wiskunde topics nog maar eens terug.

Je maakt gebruik van het merkwaardig product

(a + b)2 = a2 + 2ab + b2

Als je nu hebt x2 + x − 20, dan halveer je de coëfficiënt van de x, en dat geeft ½. Maar nu is (x + ½)2 = x2 + 2·½·x + (½)2 = x2 + x + ¼, en dat is ¼ teveel, dus moet ik die ¼ er weer aftrekken om te kunnen concluderen dat x2 + x hetzelfde is als (x + ½)2 − ¼.
pi_131627312
quote:
0s.gif Op vrijdag 27 september 2013 20:19 schreef Riparius het volgende:

[..]

Kwadraatafsplitsing. Dat heb ik afgelopen zomer uitvoerig met je behandeld. Lees de oude wiskunde topics nog maar eens terug.

Je maakt gebruik van het merkwaardig product

(a + b)2 = a2 + 2ab + b2

Als je nu hebt x2 + x − 20, dan halveer je de coëfficiënt van de x, en dat geeft ½. Maar nu is (x + ½)2 = x2 + 2·½·x + (½)2 = x2 + x + ¼, en dat is ¼ teveel, dus moet ik die ¼ er weer aftrekken om te kunnen concluderen dat x2 + x hetzelfde is als (x + ½)2 − ¼.
Het begint me nu te dagen waarom ik constante zag als maximum of minimum!
pi_131627897
quote:
0s.gif Op vrijdag 27 september 2013 20:19 schreef Riparius het volgende:

[..]

Kwadraatafsplitsing. Dat heb ik afgelopen zomer uitvoerig met je behandeld. Lees de oude wiskunde topics nog maar eens terug.

Je maakt gebruik van het merkwaardig product

(a + b)2 = a2 + 2ab + b2

Als je nu hebt x2 + x − 20, dan halveer je de coëfficiënt van de x, en dat geeft ½. Maar nu is (x + ½)2 = x2 + 2·½·x + (½)2 = x2 + x + ¼, en dat is ¼ teveel, dus moet ik die ¼ er weer aftrekken om te kunnen concluderen dat x2 + x hetzelfde is als (x + ½)2 − ¼.
Sorry dat ik er ff tussen val maar ik vind het wel echt ongelofelijk chill dat je de moeite neemt de vragen van een random FOK!'er te beantwoorden op een vrijdagavond. Jij moet wel echt een soort wiskunde-passie hebben ofzo :P Wat doe je voor beroep? Of studeer je nog?
pi_131627906
Iig bedankt! Ik kan het nu op drie manieren oplossen.
pi_131629118
Ok, ik snap het eindelijk waarom je het zo kan oplossen!
pi_131629141
quote:
0s.gif Op vrijdag 27 september 2013 20:48 schreef ulq het volgende:

[..]

Sorry dat ik er ff tussen val maar ik vind het wel echt ongelofelijk chill dat je de moeite neemt de vragen van een random FOK!'er te beantwoorden op een vrijdagavond. Jij moet wel echt een soort wiskunde-passie hebben ofzo :P Wat doe je voor beroep? Of studeer je nog?
Ik beantwoord nooit privé vragen. En de vragensteller is niet random maar mij welbekend. Maar inderdaad, hier is het ook vrijdagavond, en ik wil nu toch wel graag even The Voice kijken ...
pi_131631460
quote:
0s.gif Op vrijdag 27 september 2013 21:16 schreef Riparius het volgende:

[..]

Ik beantwoord nooit privé vragen. En de vragensteller is niet random maar mij welbekend. Maar inderdaad, hier is het ook vrijdagavond, en ik wil nu toch wel graag even The Voice kijken ...
Wat is dit nu weer. :')

Zelfs ik zit te pilsen met een maat onder het genot van een hoorcollege Getallen. _O_

[ Bericht 11% gewijzigd door #ANONIEM op 27-09-2013 22:08:34 ]
pi_131635236
quote:
2s.gif Op vrijdag 27 september 2013 22:05 schreef Amoeba het volgende:

[..]

Wat is dit nu weer. :')

Zelfs ik zit te pilsen met een maat onder het genot van een hoorcollege Getallen. _O_
Nee dat klinkt al een stuk beter :')
pi_131635400
quote:
0s.gif Op zaterdag 28 september 2013 00:09 schreef thenxero het volgende:

[..]

Nee dat klinkt al een stuk beter :')
We bekeken even een bewijs over equivalentieklassen en partities dat in mijn college vaag werd behandeld. Handig als je videocolleges van de RU en de TU/e kunt inzien.
pi_131635418
En ik definieer dat wiskunde > The Voice.

Commercieel kutprogramma. :')
pi_131639094
quote:
0s.gif Op vrijdag 27 september 2013 21:16 schreef Riparius het volgende:

[..]

Ik beantwoord nooit privé vragen. En de vragensteller is niet random maar mij welbekend. Maar inderdaad, hier is het ook vrijdagavond, en ik wil nu toch wel graag even The Voice kijken ...
De vraag of je studeert of werkt is toch niet echt een ingrijpende privé-vraag die je privacy aantast lijkt me? Maarja het is jouw goed recht om geen antwoord te geven natuurlijk ;)
  zaterdag 28 september 2013 @ 10:33:20 #32
105018 Borizzz
Thich Nhat Hanh
pi_131640330
Even sticky gemaakt; had m per ongeluk centraal gezet :)
kloep kloep
pi_131640564
quote:
0s.gif Op zaterdag 28 september 2013 08:03 schreef ulq het volgende:

[..]

De vraag of je studeert of werkt is toch niet echt een ingrijpende privé-vraag die je privacy aantast lijkt me? Maarja het is jouw goed recht om geen antwoord te geven natuurlijk ;)
Hij beantwoordt geen persoonlijke vragen. Lees zijn posthistorie maar eens door, dan zul je vanzelf uitvinden wat het antwoord op je vraag is.

[ Bericht 1% gewijzigd door #ANONIEM op 28-09-2013 11:08:46 ]
pi_131643409
Ik zit net in 4 VWO en heb dus voor het eerst de grafische rekenmachine(Casio fx-9860II) te gebruiken. Grafieken plotten enzo was allemaal heel makkelijk, maar nu opeens vult hij steeds een T in als ik op het knopje drukte waarmee ik normaal een X invulde in de formule. Als ik het dan probeer zecht hij Syntax error. Ik heb in plaats daarvan de mogelijkheid om een X in te vullen met F5, maar als ik dat doe geeft hij Argument Error.

Ik had dat 1 keer eerder maar toen kreeg ik het op een of andere manier weer weg. Nu lukt dat niet meer. Hoe krijg ik dit weer gefixt?
Stil maar gauw.
pi_131643463
quote:
2s.gif Op zaterdag 28 september 2013 10:49 schreef Amoeba het volgende:

[..]

Hij beantwoordt geen persoonlijke vragen. Lees zijn posthistorie maar eens door, dan zul je vanzelf uitvinden wat het antwoord op je vraag is.
Ik zou zeggen een technicus vooral gericht op hardware/TV's ofzo? Maar daar komt toch ook weer niet zo veel wiskunde bij kijken?

Ik ben wel nieuwsgierig geworden nu door deze geheimzinnigheid :P
abonnement Unibet Coolblue Bitvavo
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')