quote:
Als je dat met gemak aan kan, dan lijkt het mij aannemelijk dat je econometrie aan kan. Bij dat soort olympiade vraagstukken moet je creatief kunnen nadenken, iets wat naar mijn mening niet goed wordt getraind op het VWO. Die mensen die niet creatief kunnen denken, komen zichzelf op de uni tegen.
De opgave waar je naar verwijst vergt nogal wat werk.
"Van een trap met 15 treden moet elke trede blauw of geel geverfd worden, waarbij geen twee opeenvolgende treden beide blauw mogen zijn.
Op hoeveel manieren kan de trap geverfd worden?"
• 15 gele treden - 1 optie
• 14 gele treden - 15 opties
Vanaf hier wordt het wat lastiger aangezien je met overlappingen rekening moet houden.
• 13 gele treden - 13 opties wanneer de eerste trede blauw is, 12 opties wanneer de tweede trede blauw is, 11 opties wanneer de derde tree blauw is maar 1 overlapping dus 10 extra opties, enzovoorts
• 3 blauwe treden: 11 opties wanneer de eerste trede en de derde trede blauw zijn, 10 opties wanneer de eerste en de vierde trede blauw zijn, ... , 10 opties wanneer de tweede trede en de vierde trede blauw zijn, 9 opties wanneer de tweede en de vijfde trede blauw zijn
...
• 1 optie wanneer 7 treden blauw zijn: 2, 4, ..., 12, 14
• 1 optie voor wanneer 8 treden blauw zijn: 1, 3, ..., 13, 15
De truuc is natuurlijk dat je moet inzien hoe je handig met faculteiten werkt en dat je patronen moet herkennen.
Ligt het nu aan mij of moet je ietwat masochistisch zijn om zo'n opgave uit te werken? Je komt er wel uit maar het is nogal monnikenwerk.
[ Bericht 0% gewijzigd door Bram_van_Loon op 30-03-2012 18:18:31 ]
ING en ABN investeerden honderden miljoenen euro in DAPL.
#NoDAPL