abonnement Unibet Coolblue Bitvavo
pi_110627282
Stel je hebt drie onherkenbare teams die tegen allemaal precies één keer tegen elkaar gaan spelen. De vraag is hoeveel mogelijke uitslagen er dan zijn.

Als het twee teams waren geweest, dan waren er dus twee uitkomsten (of iemand wint, of het is gelijkspel). Met drie teams zou het moeten leiden tot 7 uitkomsten, maar ik zie niet waarom. De vraagstelling is ook niet echt duidelijk, bijvoorbeeld: zijn de wedstrijden herkenbaar? Wat ik ook probeer ik kom niet op 7 uit...
  zondag 22 april 2012 @ 13:01:54 #242
75592 GlowMouse
l'état, c'est moi
pi_110627402
Hoe is een uitslag gedefinieerd? Als je kijkt naar 'team met het hoogste aantal goals' dan zou je op 7 subsets uitkomen (power set minus de lege verzameling).
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_110627828
Een uitslag is ook niet gedefinieerd in de opgave.

Maar met jouw definitie kom ik ook niet op 7 uit. Als je een verzameling hebt van drie teams {A,B,C}, dan zit in je powerset bijvoorbeeld {A,B} en {B,C}. Die kan je niet van elkaar onderscheiden, dus tel je dingen dubbel.

De puzzel komt trouwens uit het blad Nekst van Asset... daar moet je het oplossen voor het geval dat je 4 teams hebt. Dan zal 2^4-1 ook vast te simpel zijn :) .
  zondag 22 april 2012 @ 13:45:37 #244
75592 GlowMouse
l'état, c'est moi
pi_110628779
Ik zal morgen eens kijken in de Nekst, maar het is niet zo netjes om hier de oplossing te vragen.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_110629438
Het is ook niet de bedoeling dat hier iemand met de oplossing komt, maar dat ik weet wat ze met de vraagstelling bedoelen zodat ik het zelf kan oplossen als je 4 teams hebt (want dat is de vraag). Ik ga ook niet voor de appeltaart, want ik ben er toch geen lid ;) . Doe maar via pm anders.
  zondag 22 april 2012 @ 17:21:09 #246
256829 Sokz
Livin' the life
pi_110638134
Wat is precies het verschil in statistiek tussen de 'Z-test' en de 'T-test'. Ik snap de berekeningen etcetera maar wanneer moet je de Z-test gebruiken en wanneer de T-test?
Manier van berekenen is zo goed als hetzelfde, s en 'o'(sigma pakt die niet) zijn volgens mij hetzelfde (bereken je op de zelfde manier) dus waar zit het verschil? :P
pi_110638381
T-test wanneer n<30, Z-test wanneer n>30
  zondag 22 april 2012 @ 17:54:44 #248
75592 GlowMouse
l'état, c'est moi
pi_110639348
quote:
0s.gif Op zondag 22 april 2012 17:27 schreef Tauchmeister het volgende:
T-test wanneer n<30, Z-test wanneer n>30
Nee, wanneer de data uit een normale verdeling komt, gebruik je de Z-test wanneer de variantie bekend is, de T-toets als die niet bekend is.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
  zondag 22 april 2012 @ 18:00:42 #249
256829 Sokz
Livin' the life
pi_110639575
quote:
0s.gif Op zondag 22 april 2012 17:54 schreef GlowMouse het volgende:

[..]

Nee, wanneer de data uit een normale verdeling komt, gebruik je de Z-test wanneer de variantie bekend is, de T-toets als die niet bekend is.
Makes sense .. dank u! :)
  maandag 23 april 2012 @ 19:56:19 #250
102865 One_conundrum
zeg maar Conundrum
pi_110688473
haai,

p * (a * R1 + (1-a) * R2) > I

Hoe los ik op voor a? alles is gegeven behalve a dus.
"Vanity, definitely my favorite sin. . . ."
pi_110691811
quote:
0s.gif Op maandag 23 april 2012 19:56 schreef One_conundrum het volgende:
haai,

p * (a * R1 + (1-a) * R2) > I

Hoe los ik op voor a? alles is gegeven behalve a dus.
Begin eens met de binnenste set haakjes weg te werken, en daarna de overgebleven (buitenste) set haakjes weg te werken. Houd er verder rekening mee dat bij een ongelijkheid het teken omklapt als je beide leden met een negatief getal vermenigvuldigt of door een negatief getal deelt. Je zult dus toch meer bijzonderheden moeten geven.
  dinsdag 24 april 2012 @ 16:46:15 #252
75592 GlowMouse
l'état, c'est moi
pi_110726948
quote:
0s.gif Op zondag 22 april 2012 12:58 schreef thenxero het volgende:
Stel je hebt drie onherkenbare teams die tegen allemaal precies één keer tegen elkaar gaan spelen. De vraag is hoeveel mogelijke uitslagen er dan zijn.

Als het twee teams waren geweest, dan waren er dus twee uitkomsten (of iemand wint, of het is gelijkspel). Met drie teams zou het moeten leiden tot 7 uitkomsten, maar ik zie niet waarom. De vraagstelling is ook niet echt duidelijk, bijvoorbeeld: zijn de wedstrijden herkenbaar? Wat ik ook probeer ik kom niet op 7 uit...
Ik heb vandaag even met de maker gesproken, en die gaf de tip om het te zien als een graaf. Elke speler is een knoop, en de uitslag van een wedstrijd is dan een arc (eentje wint) of een edge (gelijkspel). Bij drie spelers is het aantal arcs plus het aantal edges 3 (3 wedstrijden totaal). Je hebt dan drie mogelijkheden voor om twee knopen te verbinden, maar je moet dan wel nog de isomorfismen eruit filteren.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_110727959
quote:
14s.gif Op dinsdag 24 april 2012 16:46 schreef GlowMouse het volgende:

[..]

Ik heb vandaag even met de maker gesproken, en die gaf de tip om het te zien als een graaf. Elke speler is een knoop, en de uitslag van een wedstrijd is dan een arc (eentje wint) of een edge (gelijkspel). Bij drie spelers is het aantal arcs plus het aantal edges 3 (3 wedstrijden totaal). Je hebt dan drie mogelijkheden voor om twee knopen te verbinden, maar je moet dan wel nog de isomorfismen eruit filteren.
Op die manier krijg ik voor 3 teams inderdaad 7 niet-isomorfe grafen. Maar dan vind ik de vraagstelling wel extreem vreemd. Want je hebt dan bijvoorbeeld een graaf die de volgende uitslag representeert:
A wint van B
B wint van C
A speelt gelijk met C

Maar omdat je geen onderscheid kan maken tussen de teams zou dat equivalent moeten zijn aan
A wint van B
A wint van C
B en C spelen gelijk

Dat laatste wordt echter gerepresenteerd door een graaf die niet isomorf is met de eerste.

De vraagstelling lijkt me dus verkeerd, maar alsnog is het wel een interessante vraag hoeveel verschillende grafen er zijn.
  dinsdag 24 april 2012 @ 17:23:49 #254
75592 GlowMouse
l'état, c'est moi
pi_110728677
In het tweede geval is er een team dat 2x wint. Je weet niet welk team dat is, maar zo'n team heb je niet in situatie 1.
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_110729589
Ja dat is nu duidelijk inderdaad, maar dat had ik nooit uit de vraag gehaald. ;)
  woensdag 25 april 2012 @ 00:02:08 #256
372355 DeManvanStaal
maar ondertussen..
pi_110752294
hoe tel je polaire complexe getallen bij elkaar op? dus bijvoorbeeld
30∠30 + 45∠60=?
  woensdag 25 april 2012 @ 00:05:08 #257
75592 GlowMouse
l'état, c'est moi
pi_110752416
eerst omzetten naar a+b i
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_110825437
Ik ben even in de war met de terminologie. Als er gevraagd wordt of een rationale functie een nulwaarde heeft, bedoelen ze dan of de grafiek de x-as dan wel y-as snijdt, dus (x,0) of (0,y)?
  donderdag 26 april 2012 @ 18:54:48 #259
75592 GlowMouse
l'état, c'est moi
pi_110825800
een functie koppelt aan de input een waarde

[ Bericht 7% gewijzigd door GlowMouse op 26-04-2012 19:03:46 ]
eee7a201261dfdad9fdfe74277d27e68890cf0a220f41425870f2ca26e0521b0
pi_110832887
quote:
14s.gif Op donderdag 26 april 2012 18:54 schreef GlowMouse het volgende:
een functie koppelt aan de input een waarde
Ik heb even Basisboek Wiskunde doorgebladerd, en daar komt het begrip nulpunt voor. Dat ken ik wel. Is nulpunt en nulwaarde hetzelfde?

[ Bericht 5% gewijzigd door Warren op 26-04-2012 21:06:08 ]
pi_110836459
Voor zover ik weet is nulwaarde geen standaardterm in de wiskunde. Maar als de vraag is of een functie een nulwaarde heeft, dan zou de vraag triviaal zijn als ze de y bedoelen in (0,y). Deze y bestaat precies wanneer 0 in het domein van de functie zit. Dan kan je dus net zo goed vragen: is de functie gedefinieerd op 0? Dat kan een vraag zijn, maar is niet echt interessant. Dus dan zullen ze waarschijnlijk nulpunten bedoelen.

[ Bericht 7% gewijzigd door thenxero op 26-04-2012 22:18:14 ]
pi_110847738
quote:
0s.gif Op donderdag 26 april 2012 20:57 schreef Warren het volgende:

[..]

Ik heb even Basisboek Wiskunde doorgebladerd, en daar komt het begrip nulpunt voor. Dat ken ik wel. Is nulpunt en nulwaarde hetzelfde?
Bladeren is ouderwets. Ik heb even het PDFje van dit boek doorzocht op de term nulpunt en dan blijkt dat Van de Craats het begrip in opgaven gebruikt voordat hij het definieert, waaruit maar weer eens blijkt hoe slecht dit boek is. Overigens zie ik in de Nederlandse Wikipedia s.v. nulpunt dat daar nulwaarde als synoniem wordt opgevoerd. Maar de term nulwaarde is niet gangbaar en kun je dus beter niet gebruiken, en zeker niet omdat we de term nulpunt al hebben. Wat dit betreft is het Nederlands duidelijker dan bijvoorbeeld het Engels of het Frans, want daar bestaan geen specifieke termen voor een nulpunt van een functie. In het Duits wel, daar spreekt men van een Nullstelle.
pi_110882046
quote:
0s.gif Op vrijdag 27 april 2012 01:03 schreef Riparius het volgende:

[..]

Bladeren is ouderwets. Ik heb even het PDFje van dit boek doorzocht op de term nulpunt en dan blijkt dat Van de Craats het begrip in opgaven gebruikt voordat hij het definieert, waaruit maar weer eens blijkt hoe slecht dit boek is. Overigens zie ik in de Nederlandse Wikipedia s.v. nulpunt dat daar nulwaarde als synoniem wordt opgevoerd. Maar de term nulwaarde is niet gangbaar en kun je dus beter niet gebruiken, en zeker niet omdat we de term nulpunt al hebben. Wat dit betreft is het Nederlands duidelijker dan bijvoorbeeld het Engels of het Frans, want daar bestaan geen specifieke termen voor een nulpunt van een functie. In het Duits wel, daar spreekt men van een Nullstelle.
Jawel, in het Engels heb je "root" (soms in het Nederlands ook wortel, maar dat vind ik lelijk omdat wortels ook wat anders kunnen zijn).
pi_110883220
Of gewoon "zero".
pi_110888657
quote:
0s.gif Op vrijdag 27 april 2012 22:41 schreef thenxero het volgende:

[..]

Jawel, in het Engels heb je "root" (soms in het Nederlands ook wortel, maar dat vind ik lelijk omdat wortels ook wat anders kunnen zijn).
Dat is precies wat ik bedoel, root of zero zijn zonder contekst of nadere aanduiding ambigu, net als wortel.

Het lijkt er trouwens op dat de term nulwaarde uit Vlaanderen is komen overwaaien en dat de term is ingevoerd om een 'verkeerde' associatie van de term nulpunt met het meetkundige begrip punt te vermijden. Hier staat bijvoorbeeld letterlijk dat leerlingen moeten letten op het onderscheid tussen nulpunt en nulwaarde van een functie. Kennelijk worden in deze conceptie met nulpunten (de coördinaten van) snijpunten van de grafiek van een reële functie met de x-as bedoeld, zie ook hier. Maar zo is het middel erger dan de kwaal, want het herdefiniëren van een al decennia gebruikelijke term is natuurlijk de beste manier om de verwarring alleen nog maar groter te maken. Andere Vlaamse bronnen spreken overigens weer tegen dat er een onderscheid bestaat tussen nulpunt en nulwaarde. In het bekende boek Wiskundige Basisvaardigheden bijvoorbeeld (p. 178) zijn nulpunt en nulwaarde synoniem.

[ Bericht 0% gewijzigd door Riparius op 28-04-2012 03:53:25 ]
pi_110889996
quote:
0s.gif Op zaterdag 28 april 2012 01:23 schreef Riparius het volgende:

[..]

Het lijkt er trouwens op dat de term nulwaarde uit Vlaanderen is komen overwaaien en dat de term is ingevoerd om een 'verkeerde' associatie van de term nulpunt met het meetkundige begrip punt te vermijden. Hier staat bijvoorbeeld letterlijk dat leerlingen moeten letten op het onderscheid tussen nulpunt en nulwaarde van een functie.
Die terminologie onduidelijkheid maakt het inderdaad lastig om een ogenschijnlijk makkelijke vraag op te lossen als deze:



Deze komt overigens uit Vlaanderen.
pi_110890096
quote:
0s.gif Op zaterdag 28 april 2012 02:52 schreef Warren het volgende:

[..]

Die terminologie onduidelijkheid maakt het inderdaad lastig om een ogenschijnlijk makkelijke vraag op te lossen als deze:

[ afbeelding ]

Deze komt overigens uit Vlaanderen.
Uitspraak <B> is onjuist. De grafiek is immers een hyperbool en deze heeft geen buigpunten. Dus ik zie de moeilijkheid niet zo.
pi_110911185
Hooii,
Ik begrijp niet wat ik moet doen als je een vaas met 18 knikkers hebt. Bestaand uit 7 gele, 3 rode, 2 zwarte en 6 blauwe. En je vervolgens de kans berekent als je daarvan zonder terugleggen en de volgorde is niet belangrijk 3 gele, 2 rode, 1 zwarte en 1 blauwe pakt.
Ik zocht uitleg hierover en kwam op dit filmpje terecht:

Bij : begint hij over 'met terugleggen en zonder herhaling'. Alleen die berekening met 7! enzo( (streepjesmethode fzo) hebben wij nooit geleerd op school.
Ik heb alleen de kans op 1 zo'n rijtje:
P(3 gele en 2 rode en 1 zwarte en 1 blauwe)=
(gggrrzb) = (7:18)^3 x (3:18)^2 x (2:18) x (6:18)=
Maar het moet op verschillende manieren, omdat de volgorde dus niet belangrijk is. Hoe je dat doet weet ik dus niet.

Ik dacht dat je dan het antwoord van dat rijtje keer 'n ncr k' moet doen. Alleen dat is toch wanneer je maar 2 groepen heb? & hier heb je allemaal verschillende groepen 3 uit 7, 2 uit 7 enzovoort. Dus ik begrijp heel niet wat ik nu moet doen.

Heel erg bedankt alvast!
pi_110926223
Kans is het aantal goede mogelijkheden gedeeld door het totale aantal mogelijkheden. Totale aantal mogelijkheden is in dit geval 18 boven 7, dus 31824.

Het goede aantal mogelijkheden: eerst kijken naar het aantal gele, dat is 7 boven 3, dus 35; het aantal rode is 3 boven 2 is 3, zwarte 2 boven 1 is 2, blauwe 6 boven 1 is 6. Het aantal mogelijkheden waarbij je uit elke kleur het juiste aantal hebt is dus 35 keer 3 keer 2 keer 6 is 1260.

Kans is dus 1260/31824.
pi_110930565
quote:
0s.gif Op zaterdag 28 april 2012 03:04 schreef Riparius het volgende:

[..]

Uitspraak <B> is onjuist. De grafiek is immers een hyperbool en deze heeft geen buigpunten. Dus ik zie de moeilijkheid niet zo.
Ja, helemaal waar. Ik weet ook niet waarom ik dat opeens weer poste. Ik keek weer naar nulwaarde, maar ik had al eerder vastgesteld dat er geen nulwaarde (nulwaarde als in nulpunt) was.
abonnement Unibet Coolblue Bitvavo
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')