Nou ten eerste is je tweede coordinaat niet helemaal correct, want je zit toch echt in de negatieve y-as...quote:Op zondag 23 oktober 2011 16:44 schreef Amoeba het volgende:
[..]
Ja, toch wel. Vraag fout gelezen vrees ik.
Mijn GR gaat dit probleempje eens bekijken.
Ik bedoel natuurlijk -.5sqrt(3).....quote:Op zondag 23 oktober 2011 16:46 schreef Fingon het volgende:
[..]
Nou ten eerste is je tweede coordinaat niet helemaal correct, want je zit toch echt in de negatieve y-as...
Inderdaad. De vraagstelling van Amoeba is ook incompleet. Hij denkt kennelijk dat er maar één lijn is die aan het gestelde voldoet, maar dat is niet zo. Er liggen oneindig veel punten in ieder kwadrant op de eenheidscirkel waarvan de coördinaten rationaal zijn.quote:Op maandag 24 oktober 2011 16:13 schreef Don_Vanelli het volgende:
[..]
y* moest toch rationaal zijn? In dat geval is y* dat zeker niet.
't Is een implicatie. Wanneer is deze niet waar?quote:Op maandag 24 oktober 2011 18:37 schreef thenxero het volgende:
Ik moet een tegenvoorbeeld vinden voor
Ik moet zelf een taal L, structuur M en formules phi en psi bedenken zodat het niet klopt. Wie kan me helpen?
Als de linkerkant wel waar is en de rechterkant niet.quote:Op maandag 24 oktober 2011 20:15 schreef thabit het volgende:
[..]
't Is een implicatie. Wanneer is deze niet waar?
De rechterkant is ook weer een implicatie. Die moet dus niet waar zijn. Daaruit kun je wederom conclusies trekken.quote:Op maandag 24 oktober 2011 20:44 schreef thenxero het volgende:
[..]
Als de linkerkant wel waar is en de rechterkant niet.
Mijn antwoord:quote:Let S = [-1, 1] x [-1, 1] and C = { (x, y) | x2 + y2 <= 1 }.
Prove that |C| = |S|.
Hoe noteer ik dit eerste verhaal, over de bijectie, kort en duidelijk? Of moet ik gewoon dit verhaal uitleggen?quote:De eerste set kan je zien als alle elementen binnen of op de rand van een vierkant, de tweede set als alle elementen binnen of op de rand van een cirkel (waarschijnlijk hebben ze daarom ook C en S als letters voor de verzamelingen gekozen).
Ik zie dat er een injectieve functie bestaat van S naar C en omgekeerd. Van S naar C: Definieer r als (.5 + s1 / 2) waar s1 het eerste element uit het tupel uit S is, en a als (pi * s2 + pi) waar s2 het tweede element uit het tupel uit S is. Het bijbehorende tupel uit C is dan (r*cos(a), r*sin(a)).
De injectieve functie van C naar S is. (arctan2(c1, c2), sqrt(c12 + x22)) met c1 het eerste element uit het tupel uit C en c2 het tweede element uit het tupel uit C.
En omdat er een injectieve functie van C naar S is en andersom, geldt:
|C| <= |S|
|S| <= |C|
en volgens het theorem van Cantor-Schroeder-Bernstein ook:
|C| = |S|
Oh crapquote:Op dinsdag 25 oktober 2011 16:32 schreef twaalf het volgende:
Het punt (-1,0) van het vierkant wordt op hetzelfde punt afgebeeld als het punt (-1,1) van het vierkant.
Of wel, als de functie continu is in dat punt. Limieten zijn heel belangrijk, bijvoorbeeld voor de afgeleide (waarbij de functie zelf continu moet zijn).quote:Op dinsdag 25 oktober 2011 18:48 schreef Burbujas het volgende:
Kan iemand mij het nut van het berekenen van een limit van een functie uitleggen? Je bepaalt dus de waarde die een bepaalde functie nooit zal bereiken
klein voorbeeldje:quote:Op dinsdag 25 oktober 2011 18:48 schreef Burbujas het volgende:
Kan iemand mij het nut van het berekenen van een limit van een functie uitleggen? Je bepaalt dus de waarde die een bepaalde functie nooit zal bereiken, maar wat heb je daar aan?
Als het goed is moet ik het doen via de epsilon-delta definitie.quote:Problem:
Let f, g: ℝ -> ℝ be continuous functions. Prove: For all α > 0 and β > 0, the function F: ℝ -> ℝ defined by F(x) = α * f(x) + β * g(x) is continuous.
Maar dat lijkt me dus veel te simpel. Pak ik het totaal verkeerd aan?quote:Because it is given that f(x) is continuous, it follows through the epsilon-delta definition that there exists a δ for which δ > |x-p| ≥ |f(x)-f(p)| holds. Then, it follows that δ * α > α * |x-p| ≥ α * |f(x)-f(p)|, which implies that f(x) * α is continuous if you choose α times the δ for which f(x) was continuous, as the δ for f(x) * α.
Nee, dit gaat al verkeerd. Uit de ε,δ definitie van continuïteit volgt helemaal niet wat jij hier beweert. Als je functie f: R ↦ R continu is in x = p, dan bestaat er voor elke ε > 0 een δ > 0 zodanig dat | f(x) - f(p) | < ε voor elke x zodanig dat | x - p | < δ. Maar dat impliceert niet wat jij stelt.quote:Op woensdag 26 oktober 2011 03:25 schreef Thas het volgende:
[..]
Als het goed is moet ik het doen via de epsilon-delta definitie.
Dit is wat ik tot nu toe heb:
Because it is given that f(x) is continuous, it follows through the epsilon-delta definition that there exists a δ for which δ > |x-p| ≥ |f(x)-f(p)| holds.
[snip]
Ik zie het, jij hebt inderdaad de correcte, volledige definitie, ik maakte fouten.quote:Op woensdag 26 oktober 2011 04:04 schreef Riparius het volgende:
[..]
Nee, dit gaat al verkeerd. Uit de ε,δ definitie van continuïteit volgt helemaal niet wat jij hier beweert. Als je functie f: R ↦ R continu is in x = p, dan bestaat er voor elke ε > 0 een δ > 0 zodanig dat | f(x) - f(p) | < ε voor elke x zodanig dat | x - p | < δ. Maar dat impliceert niet wat jij stelt.
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |