Ahaa, dankjewel voor je snelle en goede hulp!quote:Op zondag 16 januari 2011 23:44 schreef BasementDweller het volgende:
[..]
Nee, niet iedere x(n) hoeft in het bolletje te zitten. Zie je waarom?
Dat zeg je eigenlijk zelf ook al.
Pas als n groot genoeg is zit hij in het bolletje (schrijf anders eens met de definitie van de limiet op wat het betekent dat a_n naar alfa convergeert als n naar oneindig gaat!!).
Dan heb je dus een heel deel van de rij wat buiten S ligt, dus is de rij geen deelverzameling van S, in tegenspraak met hoe je die rij gekozen had.
Is f positief? In dat geval is het triviaal dat m(f(x)=\inf)>0 => \int_{\Omega} f \geq \int_{f^{-1}(\inf)} f = \inf. Anders moet je f opbreken in negatieve en positieve delen en hetzelfde doen, rekening houdend met het feit dat de aanname dat \int_{\Omega} f < \inf i.h.b. betekent dat de integraal welgedefinieerd is, dus het kan niet zo zijn dat (JPB-smiley) beide delen een oneindige integraal hebben.quote:Op zondag 16 januari 2011 16:12 schreef TheLoneGunmen het volgende:
Lebesgue Integratie:
1) If f is measurable and f = g except on a set of measure zero, show that g is also measurable.
2)voor meetbare f:
[ afbeelding ]
Hoe bewijs ik dat?
Ze zijn me alle twee overigens intuitief totaal begrijpelijk.
het gaat over de afgeleide van gquote:Op maandag 17 januari 2011 19:43 schreef Paganitzu het volgende:
Bedankt voor je hulp, alleen heb ik geen idee waar je naar toe wilt gaan.
Definitie
lim = (f(x+delta x) + f(x)) / delta x
delta x-> 0
Helaas begrijp ik ook niet wat je met geheel vereenvoudigen bedoeld. Ik heb geprobeerd om formule te differentieren, en dat gelijk te stellen aan 3 in de hoop hier iets mee te kunnen. Helaas lukt dat ook niet.
1. gebruik sin²x + cos²x = 1.quote:Op maandag 17 januari 2011 19:49 schreef Marthh het volgende:
Ik heb morgen tentamen basis wiskunde, maar ik kom er nu achter dat ik ook nog goniometrie moet leren. En ik snap een gedeelte totaal niet. (ik heb alfa als a geschreven)
1. sin a = 1/6.
bereken: cos a
2. bereken: arcsin - 1/2 wortel 2
Ik hoop dat iemand me kan helpen!
bedankt alvast!
Gewoon even 2 driehoekjes uit je hoofdleren...quote:Op maandag 17 januari 2011 19:49 schreef Marthh het volgende:
Ik heb morgen tentamen basis wiskunde, maar ik kom er nu achter dat ik ook nog goniometrie moet leren. En ik snap een gedeelte totaal niet. (ik heb alfa als a geschreven)
1. sin a = 1/6.
bereken: cos a
2. bereken: arcsin - 1/2 wortel 2
Ik hoop dat iemand me kan helpen!
bedankt alvast!
Dingen uit je hoofd leren bij wiskunde is over het algemeen niet verstandig. Maar als je dan toch een ezelsbruggetje wil hebben, kun je beter het volgende onthouden:quote:Op maandag 17 januari 2011 20:44 schreef Dale. het volgende:
[..]
Gewoon even 2 driehoekjes uit je hoofdleren...
Hiermee wel lijkt me. Anders moet je zelf afleiden wat de taylorpolynoom is van een sinus (want die moet je dan ook niet uit je hoofd leren), en dan vervolgens die oneindige som berekenen?quote:Op maandag 17 januari 2011 21:43 schreef Riparius het volgende:
[..]
Dingen uit je hoofd leren bij wiskunde is over het algemeen niet verstandig.
Het is een vrij nieuw gebied; het is niet moeilijk om met een nieuw idee te komen en dat te laten publiceren. Daarom is het theoretisch weinig interessant. Daarnaast is het nergens toepasbaar.quote:
quote:Op maandag 17 januari 2011 23:11 schreef GlowMouse het volgende:
[..]
Daarnaast is het nergens toepasbaar.
Het is wel zo. Zelfs van convexe analyse, dat veel theoretischer lijkt, heb ik meer toepassingen gezien.quote:
Het laatste stukje moet -3t² zijn. Invullen lijkt me mooier, maar niet noodzakelijk.quote:Op dinsdag 18 januari 2011 09:22 schreef Fsmxi het volgende:
Stel z=x2y+xy2, x = 2+t4, y = 1-t3
Gevraagd is met de kettingregel dz/dt te vinden.
Uit dz/dt=(dz/dx)(dx/dt)+(dz/dy)(dy/dt) volgt dan toch:
dz/dt = (2xy+y2)(4t3)+(x2+2xy)(-3t3)
Is dit dan het goede antwoord of moet je x en y ook nog invullen ofzo?
In zekere zin klopt dit idee, het handigst is het om gewoon formeel de axioma's van een deelruimte na te gaan. Wees er dan vooral op bedacht dat je toch ergens moet gebruiken dat U een deelruimte van W is.quote:Op dinsdag 18 januari 2011 15:29 schreef Siddartha het volgende:
Zij U een lineaire deelruimte van V en zij V/U de quotientenruimte van U in V.
Zij W een lineaire deelruimte van V die U bevat, d.w.z U is een deelruimte van W.
Laat zien dat in dit geval W/U= {w+U| w uit W} een lineaire deelruimte van V/U is.
Ik dacht het volgende:
W is een lineaire deelruimte van V, en W/U is dan simpel de begrenzing van V/U op W.
Aangezien W lineair is, is W/U dat dan ook en dus een lineaire deelruimte van V/U.
Mijn vraag is of dit klopt en hoe kan ik dit het beste formuleren?
Nee, W/U is niet W.quote:Tevens, kan ik dit ook bewijzen door te stellen dat W/U = W ( want {w+U | w uit W} =W omdat W lineair is en U een deelverzameling van W)
Neem w1+U,w2+U in W/U.quote:Op dinsdag 18 januari 2011 16:49 schreef thabit het volgende:
[..]
In zekere zin klopt dit idee, het handigst is het om gewoon formeel de axioma's van een deelruimte na te gaan. Wees er dan vooral op bedacht dat je toch ergens moet gebruiken dat U een deelruimte van W is.
[..]
Nee, W/U is niet W.
Als g=10 staat dat er ja.quote:Op dinsdag 18 januari 2011 21:10 schreef honkiedonkie het volgende:
Ooh. heeft het te maken met het regeltje:
P(X groter of gelijk 10) = 1 - P(X kleiner of gelijk 9) ?
Is W/U een deelverzameling van V/U? Is de optelling goed gedefinieerd (onafhankelijk van gekozen representanten)?quote:Op dinsdag 18 januari 2011 17:08 schreef Siddartha het volgende:
[..]
Neem w1+U,w2+U in W/U.
Dan (w1+U) + (w2+U) = w1+w2+U een element van W/U want:
W is een lineaire deelruimte, dus w1+ w2 is een element van W.
Hetzelfde principe voor scalaire vermenigvuldiging.
Oftewel, W/U is een lineaire deelruimte.
W/U bestaat uit nevenklassen. Elk element van W/U wordt door een element van W gerepresenteerd, maar sommige elementen van W representeren hetzelfde element van W/U: voor elke u in U is w + U hetzelfde element van W/U als w + u + U, terwijl w niet gelijk is aan w + u (als u niet 0 is).quote:Waarom klopt W/U= W niet?
Laat u een element van U zijn, dan is u ook een element van W ( U is een deelgroep van W).
Dan is de verzameling van alle u+w voor w in W toch gelijk aan W? W is een lineaire deelgroep.
Die laatste stap klopt niet. Op positie (1,2) hoort een p. Als je dan gewoon verderveegt dan krijg je op (2,2) een 1-p. Onder de aanname p!=1 kun je die mooi als pivot nemen. Als je goed doorveegt, kom je uiteindelijk op [1 0 0 0; 0 1 0 3+2/p; 0 0 1 -2/p].quote:Op dinsdag 18 januari 2011 21:21 schreef Dale. het volgende:
Ik heb het stelsel...
[ [url=http://latex.codecogs.com/gif.latex?\left[\begin{matrix}%20p%20&%201%20&%201%20\%20p+1%20&%202%20&%202%20\%200%20&%203%20&%203+p%20\end{matrix}\right.%20\left|\begin{matrix}%20\%203%20\%20\%20\%206%20\%20\%20\%207%20\%20\end{matrix}\right]]afbeelding[/url] ]
Nu is de vraag "Bepaal alle oplossingen van dit stelsel als p != 0 en p != 1."
Nu staat in de uitwerkingen het volgende:
[ [url=http://latex.codecogs.com/gif.latex?\left[\begin{matrix}%20p%20&%201%20&%201%20\%20p+1%20&%202%20&%202%20\%200%20&%203%20&%203+p%20\end{matrix}\right.%20\left|\begin{matrix}%20\%203%20\%20\%20\%206%20\%20\%20\%207%20\%20\end{matrix}\right]%20\sim%20\left[\begin{matrix}%20p%20&%201%20&%201%20\%201%20&%201%20&%201%20\%200%20&%203%20&%203+p%20\end{matrix}\right.%20\left|\begin{matrix}%20\%203%20\%20\%20\%203%20\%20\%20\%207%20\%20\end{matrix}\right]%20\sim%20\left[\begin{matrix}%201%20&%201%20&%201%20\%200%20&%201%20&%201%20\%200%20&%203%20&%203+p%20\end{matrix}\right.%20\left|\begin{matrix}%20\%203%20\%20\%20\%203%20\%20\%20\%207%20\%20\end{matrix}\right]]afbeelding[/url] ]
Nu is mijn vraag wat gebeurt er in de laatste stap?
Ik geloof dat men eerst p = 0 stelt en daarna de rijen verwisseld... In ieder geval rij 2 in de voorlaatste matrix is gelijk aan rij 1 in de laatste matrix... Maar dan duikt bij mij de vraag op waarom p gelijk gesteld mag worden aan 0? Terwijl in de vraag gezegd wordt p != 0.
Ik dacht zelf omdat men nu zeg maar 2 rijen hebt waarbij a + b + c = 3 en b + c = 3 waardoor je een soort gevalsonderscheid krijgt waarbij je echter p niet precies hebt vastgelegd... immers a + b + c != b + c? Of zit ik nu onzin te verkondigen?
Sorry maar zou je dat doorvegen kunnen laten zien? Ik ben dus nu gaan rekenen met op (1,2) p maar echt verder kom ik niet... ik blijf met 2 p's in me maag zitten.quote:Op dinsdag 18 januari 2011 21:30 schreef GlowMouse het volgende:
[..]
Die laatste stap klopt niet. Op positie (1,2) hoort een p. Als je dan gewoon verderveegt dan krijg je op (2,2) een 1-p. Onder de aanname p!=1 kun je die mooi als pivot nemen. Als je goed doorveegt, kom je uiteindelijk op [1 0 0 0; 0 1 0 3+2/p; 0 0 1 -2/p].
SPOILEROm spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.
De tweede x is inderdaad een "andere" x dan de eerste x. In jouw voorbeeld is de formule inderdaad waar.quote:Op woensdag 19 januari 2011 01:26 schreef minibeer het volgende:
Ik heb een kleine vraag over gebonden en ongebonden variabelen in logische formules:
[ afbeelding ]
In dit geval vraag ik me af of de 'tweede' (de gebonden) x dezelfde waarde moet hebben als de eerste x om de formule waar te laten zijn.
Dus, concreet voorbeeld: zou de formule waar zijn als x = 5, y = 5, R(5, 5) = waar, P(4) = waar, maar P is niet waar voor alle andere waarden? Is de formule dan waar?
(Ik neem aan van wel, maar ik vind het gek dat x in dezelfde formule twee verschillende waarden kan hebben...)
ok, hartelijk dankquote:Op woensdag 19 januari 2011 09:54 schreef thabit het volgende:
[..]
De tweede x is inderdaad een "andere" x dan de eerste x. In jouw voorbeeld is de formule inderdaad waar.
Aangezien W een deelverzameling van V is en U weer een deelverzameling van W, lijkt me het voldoende om te bewijzen dat W lineair is. Dat elke representant van W/U ook in V/U zit, geeft aan dat W/U een deelverzameling is van V/U, het bewijsquote:Op dinsdag 18 januari 2011 21:24 schreef thabit het volgende:
[..]
Is W/U een deelverzameling van V/U? Is de optelling goed gedefinieerd (onafhankelijk van gekozen representanten)?
geeft aan dat W/U een lineaire deelruimte is van V/U.quote:Neem w1+U,w2+U in W/U.
Dan (w1+U) + (w2+U) = w1+w2+U een element van W/U want:
W is een lineaire deelruimte, dus w1+ w2 is een element van W.
Hetzelfde principe voor scalaire vermenigvuldiging.
Oftewel, W/U is een lineaire deelruimte.
Maar elke u is in W ( U is een deelruimte van W), en W is een lineaire deelruimte, dus zit w+u wél in W. Noem 'w+u' : y, dan is y een element van W en zit y+U voor elke u in W weer in W, want dan krijg je weer y+u ( met u uit U), waar u ook in W zit.quote:W/U bestaat uit nevenklassen. Elk element van W/U wordt door een element van W gerepresenteerd, maar sommige elementen van W representeren hetzelfde element van W/U: voor elke u in U is w + U hetzelfde element van W/U als w + u + U, terwijl w niet gelijk is aan w + u (als u niet 0 is).
Ik begrijp eigenlijk niet zo goed wat je wilt? Je kijkt naar de totale afgeleide, een functie die afbeeldt op een matrixruimte. Als je het over continuiteit daarvan wilt hebben, moet je een norm gebruiken. Je hebt het over "alle elementen van de matrix optellen", maar dat is niet zo handig omdat je dan matrices hebt die ongelijk 0 zijn maar wel norm 0 hebben. Dan moet je het op z'n minst over de som van de absolute waarden hebben. Maar dan kijk je naar de som van 4 reeelwaardige functies waarvan van elk meteen duidelijk is dat ze continu zijn, daar valt toch niets te bewijzen?quote:Op woensdag 19 januari 2011 23:41 schreef Hanneke12345 het volgende:
Probleem wat ik wel heb bij de tweede (f^{-1}) is dat ik niet goed weet hoe ik het moet gaan afschatten. Ik kom tot
[ afbeelding ]
De tweede term kan ik afschatten door y_1^2+y_2^2 te vervangen voor (y_1+y_2)^2. Maar bij de eerste kan ik dat niet doen omdat 't hele ding dan kleiner wordt.
Of ik zat te denken ik kan van de min een plus maken, dan wordt het ook groter. Maar hoe dan verder..
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |