De eerste is simpel. Gebruik de stelling van Thales, dan weet je dat de (denkbeeldige) lijn CB loodrecht staat op AC. Tevens weet je al dat AC = CD. Driehoek ABC en CBD zijn dus gelijkvormig omdat ze twee gelijke zijdes hebben. Dat betekent automatisch ook dat hoek ACB = hoek ADB.quote:Op donderdag 23 april 2009 21:57 schreef Hondenbrokken het volgende:
Nog een meetkunde-probleem:
[ link | afbeelding ]
Of hier in het groot:
http://img14.imageshack.us/img14/9529/opgave7.jpg
Trek hulplijn BC. Dan is ∠ACB recht, aangezien deze op de halve cirkelboog AB staat (stelling van Thales). Maar dan is ∠ACB = ∠DCB. Aangezien ook AC = CD zijn driehoeken ACB en DCB congruent, waaruit volgt dat ∠BAC = ∠BDC.quote:Op donderdag 23 april 2009 21:57 schreef Hondenbrokken het volgende:
Nog een meetkunde-probleem:
[ link | afbeelding ]
Of hier in het groot:
http://img14.imageshack.us/img14/9529/opgave7.jpg
Waarom hebben die bogen dan een gelijke lengte? Ze lijken me juist verschillend. Maar bedankt voor je poging.quote:We zien hoek CAE = hoek AEC omdat ze op bogen met dezelfde lengte staan, noem die hoek even x
Omdat de koorden gelijke lengte hebben (ABD en ECD zijn congruente en gelijkbenige driehoeken).quote:Op vrijdag 24 april 2009 08:39 schreef Hondenbrokken het volgende:
@TC03
Het ging me vooral om die 2e. Maar toch bedankt, ik waardeer je post.
Glowmouse:
[..]
Waarom hebben die bogen dan een gelijke lengte?
Neequote:Op vrijdag 24 april 2009 11:15 schreef GlowMouse het volgende:
[..]
Omdat de koorden gelijke lengte hebben (ABD en ECD zijn congruente en gelijkbenige driehoeken).
Jouw uitbreiding van zeta(s) naar Re s > 0 definieert alvast een meromorfe uitbreiding van f(s) naar Re s > 0. Echter, dat ding zou polen kunnen hebben op de punten s waarvoor zeta(ks)=0. Nu heeft zeta(s) geen nulpunten voor Re s > 1: immers convergeert de Dirichletreeks voor 1/zeta(s) (= som mu(n) / n^s) absoluut en uniform op compacta voor Re s > 1, en kan dus geen polen hebben. Dus zeta(ks) heeft geen nulpunten voor Re(s)>1/k. Het open deel dat je kunt nemen is dan U = {s in C : Re s > 1/k, s != 1}.quote:Op maandag 27 april 2009 10:22 schreef teletubbies het volgende:
Hey,
Ik heb een vraag over de zeta-functie.
Ik zoek een "holomorfe uitbreiding" van de functie f(s):= zeta(s)/zeta(ks) waarbij k>=2 een geheel getal is. Deze uitbreiding heeft dan als domain een open deelverzameling van C die {s \in C| Re s >=1}\{1} bevat.
Voor zeta(s) heb ik al de holomorfe uitbreiding:
zeta(s)= 1/(s-1)+1/2 -s*int((x-[x]-1/2)x-1-s ), x=0..oo).
Deze geldt voor alle s in C met Re s >0, s != 1.
Ik zit nu vast met zeta(s)/zeta(ks).
Enig idee hoe het moet?
Alvast bedankt
Oh oke, ik zie het nu. Ik vergat dat er sprake was van absolute in uniforme convergentie. Maar voor de goeie orde lijkt het me goed om te weten wat voor rol deze twee precies spelen. De uniforme convergentie van de reeks holomorfe functies (som mu(n) /n^s, n=1...k)) zorgt ervoor dat de limiet 1/zeta(s) een holomorfe functie is.quote:Op maandag 27 april 2009 15:58 schreef thabit het volgende:
[..]
Jouw uitbreiding van zeta(s) naar Re s > 0 definieert alvast een meromorfe uitbreiding van f(s) naar Re s > 0. Echter, dat ding zou polen kunnen hebben op de punten s waarvoor zeta(ks)=0. Nu heeft zeta(s) geen nulpunten voor Re s > 1: immers convergeert de Dirichletreeks voor 1/zeta(s) (= som mu(n) / n^s) absoluut en uniform op compacta voor Re s > 1, en kan dus geen polen hebben. Dus zeta(ks) heeft geen nulpunten voor Re(s)>1/k. Het open deel dat je kunt nemen is dan U = {s in C : Re s > 1/k, s != 1}.
Ik begreep het niet, vervolgens maakte ik wat andere sommen en nu begrijp ik het welquote:Op maandag 27 april 2009 15:04 schreef GlowMouse het volgende:
De functie die je hebt is (e^1/n)^x. Als je die zou differentiëren krijg je 1/n * e^(x/n).
Als je n*e^(x/n) differentieert, gaat het dus precies goed.
De absolute convergentie is hier misschien niet heel hard nodig, behalve inderdaad om aan te tonen dat je 1/zeta(s) ook als een Dirichletreeks kunt uitdrukken, of in het algemeen om makkelijk met reeksen te kunnen manipuleren. Maar dan nog heb je het alleen maar nodig voor Re(s) >> 0. Belangrijk is vooral de uniforme convergentie op compacta; dat toont namelijk aan dat de limiet ook weer holomorf is.quote:Op maandag 27 april 2009 20:43 schreef teletubbies het volgende:
[..]
Oh oke, ik zie het nu. Ik vergat dat er sprake was van absolute in uniforme convergentie. Maar voor de goeie orde lijkt het me goed om te weten wat voor rol deze twee precies spelen. De uniforme convergentie van de reeks holomorfe functies (som mu(n) /n^s, n=1...k)) zorgt ervoor dat de limiet 1/zeta(s) een holomorfe functie is.
De absolute convergentie:.....wat voor rol speelt deze in deze redenering? Ik weet wel dat absolute convergentie nodig is om het inverse van zeta(s) te vinden (Dirichletreeksen samenstellen).
Ja dat klopt. Maar wat bedoel je met maximum en minimum? Dat zie ik niet.quote:Op dinsdag 5 mei 2009 13:08 schreef GlowMouse het volgende:
Het gaat er dus om wanneer x-x³+epsilon drie nulpunten heeft. Je kunt gewoon kijken hoever het minimum nog omhoog kan en hoeveel het maximum nog omlaag.
Stel ik neem epsilon 0.3 dan zijn er nog steeds 3 dekpunten. Maar stel ik neem nu epsilon 0.5, dan zijn er geen 3 dekpunten meer. Dat begrijp ik. Maar ik zie nog steeds niet in hoe dit me verder helpt om de precieze epsilon te vinden.quote:Op dinsdag 5 mei 2009 13:34 schreef GlowMouse het volgende:
Maak eens een plaatje van de x-x³ met x in [-2,2] en y in [-2, 2], je ziet dan precies wat er fout gaat als je de functie omhoog of omlaag verschuift. Dat idee gebruik je vervolgens om het exacte antwoord te vinden.
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |