Kun je "perspectief verwante puntenreeks" en "projectiviteitsas" eens duidelijk definiëren?quote:Op maandag 24 maart 2008 11:42 schreef Borizzz het volgende:
Ik ben nu bezig met projectieve meetkunde.
Wie kan mij uitleggen waarom bij twee pespectief verwante puntenreeksen de projectiviteits-as door het snijpunt van beide dragers van de puntenreeksen gaat?
Ja, maar wat houdt dat nou precies in. Kun je me dat ook uitleggen?quote:Op zondag 23 maart 2008 22:59 schreef GlowMouse het volgende:
Bedoel je een meting?
Van 'representatief' is geen formele definitie te geven. Van een aselecte steekproef kun je theoretisch zeer veel resultaten bepalen die ik wel representatief zou noemen, maar hoe doe je in praktijk een steekproef aselect?
Screenshot maken, werkt altijd.quote:Op maandag 24 maart 2008 13:20 schreef Borizzz het volgende:
Hoe krijg je in Cabri van een figuurbestand .fig een plaatje dat je kunt oploaden :S
In praktijk houdt het in dat je een steekproef aselect probeert te houden, en daarna óf aanneemt dat hij representatief is, óf een mooi verhaal aan elkaar praat waarom een bepaalde groep in de steekproef ondervertegenwoordigd is.quote:Op maandag 24 maart 2008 13:24 schreef Prnses het volgende:
Ja, maar wat houdt dat nou precies in. Kun je me dat ook uitleggen?
Bedanktquote:In praktijk houdt het in dat je een steekproef aselect probeert te houden, en daarna óf aanneemt dat hij representatief is, óf een mooi verhaal aan elkaar praat waarom een bepaalde groep in de steekproef ondervertegenwoordigd is.
Ik ben bijna dagelijks met projectieve meetkunde bezig, vandaar dat ik je ook graag wil helpen, maar ik snap het nog steeds niet.quote:Op maandag 24 maart 2008 13:12 schreef Borizzz het volgende:
ik zal even wat proberen met cabri.
Maar perspectief verwante puntenreeksen zijn puntenreeksen van elk 4 punten waarvan de dubbelverhouding gelijk is, en waarvan de verbindingslijnen van overeenkomstige punten concurrent zijn.
als je bij twee van die puntenreeksen corresponderende verbindingslijnen trekt dan liggen alle snijpunten die je dan vindt op een rechte: de projectiviteitsas.
Is dit niet gewoon de Stelling van Desargues?quote:Op maandag 24 maart 2008 14:52 schreef Borizzz het volgende:
De vraag:
Wie kan mij uitleggen waarom bij twee pespectief verwante puntenreeksen de projectiviteits-as door het snijpunt van beide dragers van de puntenreeksen gaat?
Er is inderdaad een verband met de stelling van Pappus, dat ik trouwens nog niet wist. Ik ben gewoon dat Pappus draait rond twee keer zes punten (A, B , C en A', B', C' op twee verschillende rechten), maar blijkbaar kan het ook algemener met (bijvoorbeeld vier of nog meer) punten die door een projectiviteit verwant zijn (elk drietal kan in elk ander drietal op de andere rechte omgezet worden door een projectiviteit)quote:Op maandag 24 maart 2008 18:40 schreef Borizzz het volgende:
Nee, het heeft wel een band met stelling van Pappos.
Zuiderbuur: jouw stukje klopt. Het gaat om 2 viertallen met gelijke dubbelverhouding. Die dmv een perspectiviteit met elkaar in verband staan. De projectiviteitsas gaat nu door de drager l en l'.
Zie ook mijn plaatje.
De vraag is om dit te verklaren...
Voor zover ik weet is variatie van constanten een methode om de oplossing te vinden, nl. door te schrijven y(t) = c(t) y0(t), waarin y0 de homogene vgl. oplost.quote:Op vrijdag 28 maart 2008 14:07 schreef teletubbies het volgende:
Omdat het blijkbaar moest met 'variatie van constanten' of iets dergelijks en ik weet niet meer hoe dat ging...
Ik ben nu een beetje te moe om het jouwe volledig te analyseren, maar dit is wat onmiddellijk in me opkwam :quote:Op zaterdag 29 maart 2008 21:18 schreef teletubbies het volgende:
Idd , het is een manier om een oplossing te vinden.
Maar goed, ik dacht misschien kon het zonder de oplossing te vinden maar door puur te kijken naar de vergelijking zelf.
Een andere vraag:
Als f een monisch irreducibel in Q[x] en je vat Gal(f) op als ondergroep van Sn via zijn werking
op de nulpunten van f. Dan wil ik bewijzen:
Gal(f) is een ondergroep van An ==> discriminant(f) is een kwadraat in Q*
An is dan de alternerende groep van orde n!/2.
Wat ik zelf dacht, gebruik makend van bewijzen uit het ongerijmde:
stel dat disc(f) geen kwadraat is in Q*. De uitbreiding Q < Q(disc(f)) is een kwadratische uitbreiding. Bij deze uitbreiding behoort een ondergroep H van Gal(f). De elementen van H zijn ook permutatie, maar deze ondergroep is van orde 2, want je stuurt een wortel van het minimumpolynoom van disc(f) naar zijn geconjugeerde indien disc(f) een niet nul complex deel heeft, of naar min de wortel indien disc(f) in R zit. In beide gevallen is er sprake van een permutatie van een oneven teken en deze kan niet An zitten.
Is dit een beetje goed? kan het anders?
Wat bedoel je met "de rest"?quote:Op zondag 30 maart 2008 11:02 schreef teletubbies het volgende:
Okey, ik had idd ook een verkeerde uitbreiding getypt, Q(disc(f)) moest zijn Q(sqrt(disc(f))).
Bedankt allebei voor uitleggen.
Als f is irreducibel en separabel dan werkt Gal(f) transitief op de nulpunten van f. Andersom geldt dit ook. Als a wordt vastgehouden, dan weet je uit de transiviteit (die volgt uit f is irreducibel) dat de rest ook wordt vastgehouden toch?
Als je heel vaak Ax=b op moet lossen, dan gaat dat stukken sneller als je de vantevoren A-1 uitrekent (hoewel dat met LU-decompositie ook heel snel gaat). Inverses (en getransponeerde matrices) komen verder voor bij lineaire regressie, beleggingstheorie, markov-ketens, en nog heel veel meer.quote:Op zondag 30 maart 2008 21:15 schreef SuperRogier het volgende:
Wat heb je aan de inverse van een matrix? En wat heb je aan een getransponeerde matrix? Ik weet allebei wat het zijn en er mee te rekenen maar ik zie niet in wanneer je die moet gebruiken
Het stelsel vergelijkingen mag door de rijoperaties geen andere oplossingen krijgen. Stel je hebt de zeer eenvoudige vergelijking x=5. Daarbij hoort de matrix [1 5]. Zou je nu een kolom met iets kunnen vermenigvuldigen, bijvoorbeeld kolom1 * 5, dan krijg je [5 5], en zou plotseling gelden x=1, een heel andere oplossing dus. Het doel van rijoperaties is dat de oplossingen van het stelsel gelijk blijven.quote:En verder, met rijoperatie's, mag je dan ook een kolomsgewijs rekenkundige operatie's doen? En dan bedoel ik niet de rhs maar gewoon de vectoren. Dat zag ik laatst maar leek me niet echt mogelijk![]()
dom dom, a is niet perse een nulpunt van fquote:Op zondag 30 maart 2008 11:02 schreef teletubbies het volgende:
Okey, ik had idd ook een verkeerde uitbreiding getypt, Q(disc(f)) moest zijn Q(sqrt(disc(f))).
Bedankt allebei voor uitleggen.
Als f is irreducibel en separabel dan werkt Gal(f) transitief op de nulpunten van f. Andersom geldt dit ook. Als a wordt vastgehouden, dan weet je uit de transiviteit (die volgt uit f is irreducibel) dat de rest ook wordt vastgehouden toch?
Thanks voor je uitleg. Even over het 2e gedeelte, dat idee had ik dus ook aangezien het ook ero's worden genoemd, ofwel row operations, vandaar mijn verwarring. Ik heb een voorbeeld die ik niet begrijp, ik heb een matrix:quote:Op zondag 30 maart 2008 21:29 schreef GlowMouse het volgende:
[..]
Als je heel vaak Ax=b op moet lossen, dan gaat dat stukken sneller als je de vantevoren A-1 uitrekent (hoewel dat met LU-decompositie ook heel snel gaat). Inverses (en getransponeerde matrices) komen verder voor bij lineaire regressie, beleggingstheorie, markov-ketens, en nog heel veel meer.
En nog een klein praktisch voorbeeldje: als je I + A + A² + A³ + .... uit wilt rekenen, en An convergeert naar 0, dan kun je aantonen (doe maar eens, is niet zo lastig) dat dat gelijk is aan (I-A)-1.
[..]
Het stelsel vergelijkingen mag door de rijoperaties geen andere oplossingen krijgen. Stel je hebt de zeer eenvoudige vergelijking x=5. Daarbij hoort de matrix [1 5]. Zou je nu een kolom met iets kunnen vermenigvuldigen, bijvoorbeeld kolom1 * 5, dan krijg je [5 5], en zou plotseling gelden x=1, een heel andere oplossing dus. Het doel van rijoperaties is dat de oplossingen van het stelsel gelijk blijven.
Waar jij het zag, gingen ze misschien de rijruimte bepalen. Dat is de kolomruimte van AT. In plaats van transponeren kun je dan natuurlijk ook vegen met de kolommen. Maar verwarrend is dat wel.
Dus...je hebt voorlopig geen vraag meer?quote:Op zondag 30 maart 2008 22:34 schreef teletubbies het volgende:
oh nee:P ik heb dingen verkeerd begrepen en had dus een verkeerd beeld van wat ik moest gaan vragen! sorry dat ik slordig ben!
Als je elementaire rij-operaties (of kolomoperaties) uitvoert, dan verandert er niks aan het al dan niet inverteerbaar zijn van de matrix.quote:Op zondag 30 maart 2008 23:09 schreef SuperRogier het volgende:
en na wat rekenwerk komen ze uit op 2, -7 en 5. Die stappen snap ik wel, maar wat doen ze hierboven dan?Ze tellen doodleuk de 1e kolom bij de 3e op en doen dan een ero en dan gaan ze de determinant berekenen. Ik snap niet dat dat mag/kan
Inderdaad: de determinant verandert wel bij ero's, maar wordt daardoor alleen 0 als je een rij met 0 vermenigvuldigt (ga maar na). Alle andere operaties hebben dus geen invloed op de inverteerbaarheid. Dat je ook kolomoperaties uit mag voeren hier, volgt uit det(A) = det(AT), zodat het voor berekening van de determinant niet uitmaakt. Toevallig bij deze matrix is het handig om wat kolommen bij elkaar op te tellen, maar als je dat niet doet, kom je er ook wel uit. Bij 3x3 matrices is het sowieso niet zo noodzakelijk om eerst te vegen voor je de determinant berekent.quote:Op zondag 30 maart 2008 23:30 schreef zuiderbuur het volgende:
Als je elementaire rij-operaties (of kolomoperaties) uitvoert, dan verandert er niks aan het al dan niet inverteerbaar zijn van de matrix.
De matrix is inverteerbaar maar voor enkele waarden van P dus niet, namelijk die 2 -7 en 5. Ik snap dat als een matrix inverteerbaar is en je doet wat ero's dat dan ook zo blijft. Het zit mij hem er in dat ze doodleuk die kolom ergens anders bij optellen en dan ero's gaan doen.quote:Op zondag 30 maart 2008 23:30 schreef zuiderbuur het volgende:
Als je elementaire rij-operaties (of kolomoperaties) uitvoert, dan verandert er niks aan het al dan niet inverteerbaar zijn van de matrix.
det(A) = det(AT) zoals GlowMouse zegt. Je kunt dus transponeren. En een kolomoptellen is dus feitelijk een rij operatie op je getransponeerde matrix. (En dan kun je ook weer terugtransponeren, en dan verandert je determinant nog steeds niet).quote:Op maandag 31 maart 2008 00:05 schreef SuperRogier het volgende:
[..]
De matrix is inverteerbaar maar voor enkele waarden van P dus niet, namelijk die 2 -7 en 5. Ik snap dat als een matrix inverteerbaar is en je doet wat ero's dat dan ook zo blijft. Het zit mij hem er in dat ze doodleuk die kolom ergens anders bij optellen en dan ero's gaan doen.Hoezo mag dat?
Nogmaals: det(A) = det(AT). Dus, doe je een kolomoperatie, dan is dat alsof je de matrix transponeert (determinant blijft hetzelfde), rijen verwisselt (teken verandert mogelijk) en weer terugtransponeert (derminant blijft hetzelfde).quote:Op maandag 31 maart 2008 11:00 schreef SuperRogier het volgende:
Okee ik snap het, thanks. Veranderd trouwens het teken ook als je kolomoperatie's doet? Van 1e naar 3e niet maar naar 2e wel zoals ook bij ero's? Verder is het wel een stuk duidelijker geworden, bedankt
Je zou je eerst moeten afvragen: Zijn de prestaties van die vijf onderling onafhankelijk? Dat lijkt me eigenlijk stug. Allicht dat ze samen leren, dat het getal van 40% gebaseerd is op gemiddelden over de jaren, maar dat je wel soms een moeilijker tentamen en een makkelijker tentamen hebt. Als het niet onderling onafhankelijk is valt er niets zinnigs over te zeggen.quote:Op maandag 31 maart 2008 20:27 schreef Ki08 het volgende:
Ik moet voor Wiskunde een aantal kansberekening opgaven maken, maar weet niet meer precies hoe het moet.
Wie kan mij helpen?
1)De kans dat een eerstejaars student in een bepaald vak afstudeert is 40%. Wat zijn
de kansen dat uit een groep van 5 eerstejaars:niemand afstudeert,
(ii) precies 1 afstudeert,
(iii) minstens 3 afstuderen?
Probeer eerst eens fatsoenlijk uit te leggen wat nu precies de bedoeling is. De vier getallen die je geeft behoren gewoon tot de reeks van Fibonacci, en het ontbrekende getal is (dus) 28657. Maar verder begrijp ik niet wat je nu wil, en dat ligt echt aan jou.quote:Op dinsdag 1 april 2008 01:07 schreef no1uknow het volgende:
Zouden de (creatieve) wiskundigen hier eens kunnen kijken naar dit:
Heel apart raadsel, hulp!
En lees de 4e post (die van mij) ook nog even!
Alvast bedankt
twaalf, zie die topic.quote:Op dinsdag 1 april 2008 01:07 schreef no1uknow het volgende:
Zouden de (creatieve) wiskundigen hier eens kunnen kijken naar dit:
Heel apart raadsel, hulp!
En lees de 4e post (die van mij) ook nog even!
Alvast bedankt
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |