abonnement Unibet Coolblue Bitvavo
pi_166634307
Ik heb twee vragen. De vraag is beknopt weergegeven, alleen de relevante informatie is opgenomen. Mocht je toch een vraag hebben, laat mij weten.

Algemene informatie dataset
Y = tussen 0 en 1
Independent variabe X = tussen 1 en 4
Overige controle variabelen --> niet echt relevant hier
alpha = 5%

De samenhang tussen independent variable X met dependent variable Y moest ik op twee manieren aantonen. Zie hieronder

quote:
Manier 1: Regressieanalyse Y = b0 + b1X1 + b2Xcontrol

Uitkomst
beta 1 = 0,028 en P = 0,038. Significant want Pval < alpha
quote:
Manier 2: Pearson R analyse

Uitkomst R = 0,101 en P = 0,124. Niet significant want Pval > alpha.
Kan het kloppen dat de samenhang/verband (beta) bij de regressie wel significant is, maar bij Pearson R niet?

En volgende vraag: welke van de twee analyses geeft het meeste duidelijke beeld van de samenhang tussen de variabelen weer?
pi_166634665
quote:
0s.gif Op zondag 13 november 2016 19:30 schreef JohnKimble het volgende:
Ik heb twee vragen. De vraag is beknopt weergegeven, alleen de relevante informatie is opgenomen. Mocht je toch een vraag hebben, laat mij weten.

Algemene informatie dataset
Y = tussen 0 en 1
Independent variabe X = tussen 1 en 4
Overige controle variabelen --> niet echt relevant hier
alpha = 5%

De samenhang tussen independent variable X met dependent variable Y moest ik op twee manieren aantonen. Zie hieronder

[..]

[..]

Kan het kloppen dat de samenhang/verband (beta) bij de regressie wel significant is, maar bij Pearson R niet?

En volgende vraag: welke van de twee analyses geeft het meeste duidelijke beeld van de samenhang tussen de variabelen weer?
Het kan prima zo zijn dat bepaalde variabelen door het toevoegen van andere variabelen opeens wel significant zijn. Je ziet zelf ook wel dat de lage R al aangeeft dat het ook niet een bijster sterk verband, eerder zwak zeg maar.
pi_166634711
quote:
0s.gif Op zondag 13 november 2016 19:30 schreef JohnKimble het volgende:
Ik heb twee vragen. De vraag is beknopt weergegeven, alleen de relevante informatie is opgenomen. Mocht je toch een vraag hebben, laat mij weten.

Algemene informatie dataset
Y = tussen 0 en 1
Independent variabe X = tussen 1 en 4
Overige controle variabelen --> niet echt relevant hier
alpha = 5%

De samenhang tussen independent variable X met dependent variable Y moest ik op twee manieren aantonen. Zie hieronder

[..]

[..]

Kan het kloppen dat de samenhang/verband (beta) bij de regressie wel significant is, maar bij Pearson R niet?

En volgende vraag: welke van de twee analyses geeft het meeste duidelijke beeld van de samenhang tussen de variabelen weer?
Lees dit topic maar eens door.
pi_166634889
quote:
0s.gif Op zondag 13 november 2016 19:30 schreef JohnKimble het volgende:
Ik heb twee vragen. De vraag is beknopt weergegeven, alleen de relevante informatie is opgenomen. Mocht je toch een vraag hebben, laat mij weten.

Algemene informatie dataset
Y = tussen 0 en 1
Independent variabe X = tussen 1 en 4
Overige controle variabelen --> niet echt relevant hier
alpha = 5%

De samenhang tussen independent variable X met dependent variable Y moest ik op twee manieren aantonen. Zie hieronder

[..]


[..]

Kan het kloppen dat de samenhang/verband (beta) bij de regressie wel significant is, maar bij Pearson R niet?

En volgende vraag: welke van de twee analyses geeft het meeste duidelijke beeld van de samenhang tussen de variabelen weer?
1. Ja, dat kan.
2. De regressie met controlevariabelen geeft meer het 'pure effect' van X op Y weer.
pi_166635818
quote:
0s.gif Op zondag 13 november 2016 19:40 schreef MCH het volgende:

[..]

Lees dit topic maar eens door.
quote:
1s.gif Op zondag 13 november 2016 19:44 schreef Kaas- het volgende:

[..]

1. Ja, dat kan.
2. De regressie met controlevariabelen geeft meer het 'pure effect' van X op Y weer.
Thanks! Dus als ik het goed begrijp, dan geeft de regressieanalyse de theoretische causale relatie weer, terwijl de correlatieanalyse R dat niet doet.

De reden omdat X en Y niet correleert bij R, komt omdat een ander verband/beta (controlevariabel) de Y omlaag trekt, waardoor als je alleen X en Y vergelijkt zonder naar de overige variabelen te kijken dit nauwelijks een verband heeft?

Dit zeg ik omdat ik zie dat er een andere variabel is met beta -0,077. Zie hieronder

pi_166636542
Daar komt het wel ongeveer op neer, al kan je overigens nooit zo gemakkelijk zeggen dat een regressie-analyse een causaal verband weergeeft. Er kunnen immers nog een hoop belangrijke controlevariabelen ontbreken, er kan sprake van reverse causality zijn, etc etc.
pi_166636730
Regressie-analyse is géén indicatie voor causaliteit. Er is wat dat betreft geen verschil tussen regressie en correlatie. De regressiecoefficienten zijn wel gerelateerd aan de partiele correlatiecoefficienten, en hebben daarmee dus dezelfde beperkingen. Dit is een groot misverstand onder mensen die gebruik maken van statistiek.
pi_166636838
quote:
0s.gif Op zondag 13 november 2016 20:25 schreef Banktoestel het volgende:
Regressie-analyse is géén indicatie voor causaliteit. Er is wat dat betreft geen verschil tussen regressie en correlatie. De regressiecoefficienten zijn wel gerelateerd aan de partiele correlatiecoefficienten, en hebben daarmee dus dezelfde beperkingen. Dit is een groot misverstand onder mensen die gebruik maken van statistiek.
Hier spreekt het levende handboek der statistiek. _O_
pi_166637390
Klopt, ik bedoelde met 'theoretische causale verband' het verband wat in het regressiemodel staat met in mijn achterhoofd wat in mijn statistiekboek staat namelijk:

'When we propose a regression model, we might have a causal mechanism in mind, but
cause and effect is not proven by a simple regression. We cannot assume that the explanatory
variable is “causing” the variation we see in the response variable.'
pi_166720535
Hallo,

Voor mijn onderzoek ben ik bezig om gegevens te analyseren. Hiervoor wil ik graag weten of mijn resultaten significant zijn. Ik heb mijn resultaten nu overzichtelijk in Excel staan. Is het mogelijk om de significantie in Excel te berekenen?

Voorbeeld van mijn resultaten in een 'tabel':

A B G
2 1 0
1 0 1
1 0 0
2 2 0
2 1 1
2 0 0
2 1 0
2 2 1
2 0 1
0 2 0

A=Antwoord 1 (0=sterk, 1=voldoende/redelijk, 2=matig, 3=niet),
B=Antwoord 2 (0=Hoog, 1=Midden, 2=Laag),
G=Geslacht. (0=Man en 1=Vrouw)

Vervolgens wil ik bijvoorbeeld weten of mannen meer voorkeur hebben voor product A dan vrouwen. Hoe kan ik de significantie hiervoor berekenen? Moet ik hiervoor misschien de T-Toets gebruiken?

Alvast bedankt!
pi_166720929
Heb er toevallig vorige week ook mee zitten klooien in excel, een stuk of 4 uur. Alleen ging het toen om correlatie. Toen alles uit pure ellende maar naar SPSS gekopieerd en binnen een kwartier resultaat. Dus dat zou ik je aanraden.
pi_166734129
quote:
7s.gif Op donderdag 17 november 2016 20:18 schreef Verpakkingen het volgende:
Hallo,

Voor mijn onderzoek ben ik bezig om gegevens te analyseren. Hiervoor wil ik graag weten of mijn resultaten significant zijn. Ik heb mijn resultaten nu overzichtelijk in Excel staan. Is het mogelijk om de significantie in Excel te berekenen?

Voorbeeld van mijn resultaten in een 'tabel':

A B G
2 1 0
1 0 1
1 0 0
2 2 0
2 1 1
2 0 0
2 1 0
2 2 1
2 0 1
0 2 0

A=Antwoord 1 (0=sterk, 1=voldoende/redelijk, 2=matig, 3=niet),
B=Antwoord 2 (0=Hoog, 1=Midden, 2=Laag),
G=Geslacht. (0=Man en 1=Vrouw)

Vervolgens wil ik bijvoorbeeld weten of mannen meer voorkeur hebben voor product A dan vrouwen. Hoe kan ik de significantie hiervoor berekenen? Moet ik hiervoor misschien de T-Toets gebruiken?

Alvast bedankt!
Ik zou hiervoor geen t-toets gebruiken maar de niet-parametrische versie daarvan (Wilcoxon rank toets). Dit omdat je 'uitkomstvariabele' (waardering voor product) geen continue maar een ordinale variabele is.

Je kan dan 2 Wilcoxon toetsen doen; één om te toetsen of mannen en vrouwen verschillen in hun waardering van product A en nog een om te toetsen of mannen en vrouwen verschillen in hun waardering van product B.

Ik zou het ook handig vinden om je uitkomstvariabelen te hercoderen zodat een hoger cijfer staat voor een hogere waardering, maar dat terzijde.
pi_166814270
Ik breek even in met een ontzettende noobvraag. Ik ben zo slecht in statistiek en het is ook alweer even geleden voor mij. Heb al van alles opgezocht maar ik kom er niet uit.

Ik heb de volgende tabel en moet daarbij dus de 95% CI en p-waarden berekenen.
Iemand enig idee hoe ik dit aan moet pakken?
Je zou me ontzettend helpen!!

But while the earth sinks to its grave
You sail to the sky on the crest of a wave
pi_166814774
quote:
0s.gif Op maandag 21 november 2016 22:42 schreef Njosnavelin het volgende:
Ik breek even in met een ontzettende noobvraag. Ik ben zo slecht in statistiek en het is ook alweer even geleden voor mij. Heb al van alles opgezocht maar ik kom er niet uit.

Ik heb de volgende tabel en moet daarbij dus de 95% CI en p-waarden berekenen.
Iemand enig idee hoe ik dit aan moet pakken?
Je zou me ontzettend helpen!!

[ afbeelding ]
http://www.measuringu.com/blog/ci-five-steps.php
pi_166814928
quote:
Dankje voor de link!
Alleen kom ik precies weer uit waar ik net ook zat: hoe kom ik bij een SD, als de 'mean' het verschil is tussen 2 means? (zie mijn tabel).
Dan kan ik toch geen SD berekenen?
But while the earth sinks to its grave
You sail to the sky on the crest of a wave
pi_166815100
quote:
5s.gif Op maandag 21 november 2016 23:00 schreef Njosnavelin het volgende:

[..]

Dankje voor de link!
Alleen kom ik precies weer uit waar ik net ook zat: hoe kom ik bij een SD, als de 'mean' het verschil is tussen 2 means? (zie mijn tabel).
Dan kan ik toch geen SD berekenen?
de SD is gegeven?
pi_166815285
quote:
0s.gif Op maandag 21 november 2016 23:05 schreef MCH het volgende:

[..]

de SD is gegeven?
Ja, maar in die 5e kolom, dat is het verschil tussen de means van A en B. En daar moet ik het CI van berekenen. Dan moet ik toch ook de SD hebben die bij het verschil (dus de mean uit kolom 5) hoort?
But while the earth sinks to its grave
You sail to the sky on the crest of a wave
pi_166815540
quote:
0s.gif Op maandag 21 november 2016 23:10 schreef Njosnavelin het volgende:

[..]

Ja, maar in die 5e kolom, dat is het verschil tussen de means van A en B. En daar moet ik het CI van berekenen. Dan moet ik toch ook de SD hebben die bij het verschil (dus de mean uit kolom 5) hoort?
http://onlinestatbook.com(...)dist_diff_means.html ?
pi_166815694
of dit http://stats.stackexchang(...)etween-two-data-sets

je vraag letterlijk googlen werkt :+
pi_166815778
quote:
Thanks! Alleen hebben ze het daar wel steeds over twee verschillende populaties, terwijl mijn subsets gewoon twee gerandomiseerde groepen zijn uit 1 populatie. Enig idee of ik daar dan een andere methode voor moet gebruiken?
But while the earth sinks to its grave
You sail to the sky on the crest of a wave
pi_166820703
Hierbij nog even weer een vraag.

Ik wil graag verschil en/of samenhang tussen verschillende variabelen toetsen.

De variabelen hebben de volgende schaal:
NominaalxNominaal
NominaalxOrdinaal
OrdinaalxOrdinaal.

Hiervoor wil ik graag de Chi-Kwadraattoets (Chi-square) gebruiken. Is dit de juiste toets voor al mijn variabelen (bestaande uit nominale of ordinale schaal)?

Hiervoor gebruik ik de volgende hypothesen:
H0: Er is in de populatie geen verband tussen de variabelen (vb. leeftijd en hoe vaak mensen internetaankopen doen).
H1: Er is in de populatie wel een verband tussen deze variabelen.

Graag hoor ik van jullie!! Alvast bedankt.
pi_166821151
quote:
0s.gif Op dinsdag 22 november 2016 10:45 schreef Verpakkingen het volgende:
Hierbij nog even weer een vraag.

Ik wil graag verschil en/of samenhang tussen verschillende variabelen toetsen.

De variabelen hebben de volgende schaal:
NominaalxNominaal
NominaalxOrdinaal
OrdinaalxOrdinaal.

Hiervoor wil ik graag de Chi-Kwadraattoets (Chi-square) gebruiken. Is dit de juiste toets voor al mijn variabelen (bestaande uit nominale of ordinale schaal)?

Hiervoor gebruik ik de volgende hypothesen:
H0: Er is in de populatie geen verband tussen de variabelen (vb. leeftijd en hoe vaak mensen internetaankopen doen).
H1: Er is in de populatie wel een verband tussen deze variabelen.

Graag hoor ik van jullie!! Alvast bedankt.
is dit huiswerk?
pi_166821529
quote:
0s.gif Op dinsdag 22 november 2016 11:14 schreef MCH het volgende:

[..]

is dit huiswerk?
Nee, ik wilde even checken of ik de juiste toets heb gebruikt.
Dus is de Chi-square de juiste toets hiervoor?
pi_166821535
quote:
0s.gif Op dinsdag 22 november 2016 11:36 schreef Verpakkingen het volgende:

[..]

Nee, ik wilde even checken of ik de juiste toets heb gebruikt.
Dus is de Chi-square de juiste toets hiervoor?
Kan
pi_166821556
En spearman's rank
pi_166827479
Hallo!

Ik ben bezig met een statistiekonderzoek voor mijn studie, maar weet niet hoe ik een bepaalde berekening uit moet voeren.

Het betreft een onderzoek waarbij twee variabelen negatief correleren. twee variabelen samen moeten gebruikt worden om te onderzoeken of ze samen verband houden met een andere variabele.

(A <--> B) <--> C

Heeft iemand een suggestie voor welke methode ik het beste kan gebruiken om te onderzoeken of er een relatie is tussen de negatief correlerende variabelen en de andere variabele? In eerste instantie dacht ik er zelf aan één van de twee als mediator te gebruiken, maar omdat niet gezegd kan worden welke van de twee dan een mediator zou zijn kan dit niet, de twee variabelen moeten als gelijk gezien worden (als ik mijn docent goed begrepen heb).

Alvast bedankt voor het meedenken!

[ Bericht 2% gewijzigd door ABZ op 22-11-2016 17:12:58 ]
pi_166827522
quote:
0s.gif Op dinsdag 22 november 2016 16:56 schreef ABZ het volgende:
Hallo!

Ik ben bezig met een statistiekonderzoek voor mijn studie, maar weet niet hoe ik een bepaalde berekening uit moet voeren.

Het betreft een onderzoek waarbij twee variabelen negatief correleren. twee variabelen samen moeten gebruikt worden om te onderzoeken of ze samen verband houden met een andere variabele.

Heeft iemand een suggestie voor welke methode ik het beste kan gebruiken om te onderzoeken of er een relatie is tussen de negatief correlerende variabelen en de andere variabele? In eerste instantie dacht ik er zelf aan één van de twee als mediator te gebruiken, maar omdat niet gezegd kan worden welke van de twee dan een mediator zou zijn kan dit niet, de twee variabelen moeten als gelijk gezien worden (als ik mijn docent goed begrepen heb).

Alvast bedankt voor het meedenken!
Lekker duidelijk verhaal weer Hans. ;(
pi_166830363
quote:
0s.gif Op dinsdag 22 november 2016 16:56 schreef ABZ het volgende:
Hallo!

Ik ben bezig met een statistiekonderzoek voor mijn studie, maar weet niet hoe ik een bepaalde berekening uit moet voeren.

Het betreft een onderzoek waarbij twee variabelen negatief correleren. twee variabelen samen moeten gebruikt worden om te onderzoeken of ze samen verband houden met een andere variabele.

(A <--> B) <--> C

Heeft iemand een suggestie voor welke methode ik het beste kan gebruiken om te onderzoeken of er een relatie is tussen de negatief correlerende variabelen en de andere variabele? In eerste instantie dacht ik er zelf aan één van de twee als mediator te gebruiken, maar omdat niet gezegd kan worden welke van de twee dan een mediator zou zijn kan dit niet, de twee variabelen moeten als gelijk gezien worden (als ik mijn docent goed begrepen heb).

Alvast bedankt voor het meedenken!
Hoezo 'of ze samen verband houden'? Ik weet niet of ik je goed begrijp maar ik zou een multipele lineaire regressie uitvoeren met A en B als onafhankelijke vars en C als afhankelijke var. Je kan eventueel een interactieterm toevoegen (A*B=AB toevoegen als onafhankelijke var). Daarnaast natuurlijk even kijken of de onderlinge correlatie tussen A en B niet te hoog is (ivm multicolineariteit).
'Expand my brain, learning juice!'
&lt;a href="http://www.last.fm/user/crossover1" rel="nofollow" target="_blank"&gt;Last.fm&lt;/a&gt;
pi_167108440
Hey ppl,

Iemand die enig idee heeft hoe je in STATA groepen kunt aanmaken? Dus, bijvoorbeeld, twee groepen bestaande uit 10 variabelen per groep. Elk variabele heeft dan ook 20 observaties.
pi_167113059
quote:
0s.gif Op zondag 4 december 2016 23:18 schreef Super-B het volgende:
Hey ppl,

Iemand die enig idee heeft hoe je in STATA groepen kunt aanmaken? Dus, bijvoorbeeld, twee groepen bestaande uit 10 variabelen per groep. Elk variabele heeft dan ook 20 observaties.
Wat bedoel je precies met een groep? Wil je gewoon variabelen aanmaken? Dat kan (even uit m'n hoofd) met:
set obs 20
gen x = [waarde, bijvoorbeeld . of 1]
'Expand my brain, learning juice!'
&lt;a href="http://www.last.fm/user/crossover1" rel="nofollow" target="_blank"&gt;Last.fm&lt;/a&gt;
abonnement Unibet Coolblue Bitvavo
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')