Niet helemaal equivalent: 0 deelt 0, maar 0/0 is niet gedefinieerd.quote:Op zondag 10 april 2011 16:53 schreef BasementDweller het volgende:
Aan minibeer: a|b betekent a deelt b, oftewel b/a zit in Z. Staat ook (in iets andere vorm) gedefinieerd op p3!
Ja dat is waar. Maar ik dacht misschien dat ik deze dan weer kan bewijzen met karakteristieke functies maar dat lukte me niet.quote:Op zondag 10 april 2011 17:57 schreef thabit het volgende:
Dat is uiteraard de bedoeling, anders is de opgave fout. Je wilde het echter met karakteristieke functies doen, in dat opzicht is E(X1² X2 + X1X2²) niet de juiste stap.
Ah, ik heb gezegd f_X1+X2 = f_X1 f_X2, en dat ding 3x naar t gedifferentieerd. Na heel vaak de productregel van differentiëren toegepast te hebben komt het antwoord eruit. Bedankt.quote:Op zondag 10 april 2011 18:01 schreef thabit het volgende:
Je kan het derde moment van de som uitdrukken in karakteristieke functies, en de karakteristieke functie van de som van twee onafhankelijke stochasten in elk van beide.
Chique, bedankt.quote:Op zondag 10 april 2011 19:52 schreef thabit het volgende:
Dat "heel vaak toepassen" daar bestaat ook een binomium voor:
[ afbeelding ]
http://en.wikipedia.org/wiki/Product_rule#Higher_derivatives
Da's enkel een kwestie van domeinrestrictie. En dat had je zelf al kunnen zien aan de wortelterm waarin x in [-1,1] moet liggen, anders is deze niet gedefinieerd. En laat [-1,1] nou net het complete domein van arcsin (en arccos) zijnquote:Op zondag 10 april 2011 20:43 schreef thabit het volgende:
Nee, arcsin(sin x) is niet x: als je bij x 2pi optelt, blijft z'n sinus immers hetzelfde.
Ja, logisch dat je dan niet uitkomt, want je gaat voorbij aan de extra eis van domeinrestrictie die bij cyclometrische functies naar voren komt. 2pi valt niet binnen het domein [-1/2*pi;1/2*pi] voor sinx, en daarmee het bereik van arcsinx. Je zal eerst net zolang INT*2pi af moeten trekken totdat x, òf pi - x binnen [-1/2*pi;1/2*pi] komt te liggen.quote:Op zondag 10 april 2011 20:58 schreef thabit het volgende:
Vul maar x=2pi in: arcsin(sin 2pi) = 0, niet x.
vlogens mij wordt (x + h)^2 daar gewoon uitgeschrevenquote:Op maandag 11 april 2011 19:16 schreef Pipo1234 het volgende:
Ik heb iets dat me helemaal gek maakt. Ik ben bezig met zelfstudie voor Wiskunde B en heb niemand in mijn omgeving die me dit uitleggen. Het volgende vraag ik me af:
[ afbeelding ]
Bron: http://www.wetenschapsforum.nl/index.php?showtopic=6783
Deze formule draait om het afgeleide van f(x) = x2. Allemaal duidelijk, totdat ik bij derde stap van de formule kom. Daar komt h2 + 2hx wat mij betreft een beetje uit de lucht vallen. Ik weet dat de afgeleide van X2 = 2X, maar dat verklaart niet hoe men komt tot de derde stap.
Kan iemand mij uitleggen wat hier nou precies gebeurd. Mijn boek, Youtube en andere sites geven me geen duidelijkheid. Overigens heb ik het voorbeeld van internet gehaald, aangezien dat duidelijker is dan mijn boek.
(x+h)2= x2+2xh+h2quote:Op maandag 11 april 2011 19:16 schreef Pipo1234 het volgende:
Ik heb iets dat me helemaal gek maakt. Ik ben bezig met zelfstudie voor Wiskunde B en heb niemand in mijn omgeving die me dit uitleggen. Het volgende vraag ik me af:
[ afbeelding ]
Bron: http://www.wetenschapsforum.nl/index.php?showtopic=6783
Deze formule draait om het afgeleide van f(x) = x2. Allemaal duidelijk, totdat ik bij derde stap van de formule kom. Daar komt h2 + 2hx wat mij betreft een beetje uit de lucht vallen. Ik weet dat de afgeleide van X2 = 2X, maar dat verklaart niet hoe men komt tot de derde stap.
Kan iemand mij uitleggen wat hier nou precies gebeurd. Mijn boek, Youtube en andere sites geven me geen duidelijkheid. Overigens heb ik het voorbeeld van internet gehaald, aangezien dat duidelijker is dan mijn boek.
Heb je wel eens gehoord van een merkwaardig product?quote:Op maandag 11 april 2011 19:16 schreef Pipo1234 het volgende:
Ik heb iets dat me helemaal gek maakt. Ik ben bezig met zelfstudie voor Wiskunde B en heb niemand in mijn omgeving die me dit uitleggen. Het volgende vraag ik me af:
[ afbeelding ]
Bron: http://www.wetenschapsforum.nl/index.php?showtopic=6783
Deze formule draait om de afgeleide van f(x) = x2. Allemaal duidelijk, totdat ik bij derde stap van de formule kom. Daar komt h2 + 2hx wat mij betreft een beetje uit de lucht vallen. Ik weet dat de afgeleide van x2 = 2x, maar dat verklaart niet hoe men komt tot de derde stap.
Kan iemand mij uitleggen wat hier nou precies gebeurt. Mijn boek, Youtube en andere sites geven me geen duidelijkheid. Overigens heb ik het voorbeeld van internet gehaald, aangezien dat duidelijker is dan mijn boek.
Eigenlijk niet.quote:Op maandag 11 april 2011 19:42 schreef Riparius het volgende:
[..]
Heb je wel eens gehoord van een merkwaardig product?
Het merkwaardig product dat je in je bepaling van de afgeleide van f(x) = x2 kunt gebruiken is:quote:Op dinsdag 12 april 2011 01:11 schreef Pipo1234 het volgende:
[..]
Eigenlijk niet.Ik mis nogal wat algebraïsche kennis heb ik gemerkt. Ben er nu naar een het kijken. Erg verhelderend allemaal.
ok, laten we gewoon eens wat gaan rekenen en kijken hoever we komen:quote:Op dinsdag 12 april 2011 03:10 schreef minibeer het volgende:
Ik ben nu wat aan het leren over o.a. modulorekenen, en er staan wat opdrachten bij. Ik kan maar niet uit deze komen:
zoek de gehele getallen waarvoor x2-3y2=1997
Volgens wolfram heeft deze vergelijking geen oplossingen, maar het lukt me niet dit zelf aan te tonen. Het lukt me wel bijvoorbeeld de vergelijking a-3b=1997 op te lossen (wat dan ook niet zo moeilijk is), maar ik snap niet goed hoe je dit moet doen.
Als iemand een tip heeft hoor ik het graag.
Feitelijk is het dus zo dat X2 = 2X omdat het twee (blauwe) vierkanten vormt? Tenminste om het even eenvoudig te maken voor mezelf, want volgens mij klopt dat niet helemaal.quote:Op dinsdag 12 april 2011 03:41 schreef Riparius het volgende:
[..]
... En dat is precies wat het merkwaardig product hierboven zegt!
x2 is sowieso niet gelijk aan 2x, de afgeleide van x2 is 2x. Dat is ook niet zo omdat het twee blauwe vierkanten vormt (los daarvan, er is maar één blauw vierkant), dat is slechts een tussenstap die je nodig hebt om de limiet op te lossen.quote:Op dinsdag 12 april 2011 12:20 schreef Pipo1234 het volgende:
[..]
Feitelijk is het dus zo dat X2 = 2X omdat het twee (blauwe) vierkanten vormt? Tenminste om het even eenvoudig te maken voor mezelf, want volgens mij klopt dat niet helemaal.
quote:Op dinsdag 12 april 2011 12:40 schreef M.rak het volgende:
[..]
x2 is sowieso niet gelijk aan 2x, de afgeleide van x2 is 2x. Dat is ook niet zo omdat het twee blauwe vierkanten vormt (los daarvan, er is maar één blauw vierkant), dat is slechts een tussenstap die je nodig hebt om de limiet op te lossen.
Het vierkant laat zien dat je (a+b)2 kunt schrijven als a2+2ab+b2. Als je dat invult in de limiet kom je uit op de oplossing.
Je moet het niet te simpel maken voor jezelf door stappen simpelweg over te slaan, dan klopt het niet meer.
Ik begrijp niet precies wat je bedoelt? Als ik het uitwerk kom ik uit op(h3 + 3x2h + 3xh2 + x3 - x3)/h. Als je dat uitwerkt komt het gewoon uit hoorquote:Op dinsdag 12 april 2011 14:49 schreef Pipo1234 het volgende:
Die merkwaardige producten is precies wat ik nodig had! Alleen nu heb ik er nog een vraag over. Als ik X3 heb en dan op h3 + 3x2h + 3xh2 uitkom, wat gebeurd er dan met die overtollige 3x van de laatste samenstelling? Als ik h wegstreep houd ik namelijk 3x over... en ik weet dat het antwoord 3x2 moet zijn.
Nee die formule heb ik ook. Ik probeer het te gebruiken voor een differentatie van X3. Bij X2 kom ik er door H weg te strepen. Maar bij X3 houd ik op de volgende manier 3X2 en 3X over: h3 + 3x2h + 3xh2 + x3 - x3)/hquote:Op dinsdag 12 april 2011 14:56 schreef M.rak het volgende:
[..]
Ik begrijp niet precies wat je bedoelt? Als ik het uitwerk kom ik uit op(h3 + 3x2h + 3xh2 + x3 - x3)/h. Als je dat uitwerkt komt het gewoon uit hoor. Misschien dat je vergeten bent om in het begin f(x+h) - f(x) te doen?
Ah, nu begrijp ik het denk ik:quote:Op dinsdag 12 april 2011 08:30 schreef Don_Vanelli het volgende:
[..]
ok, laten we gewoon eens wat gaan rekenen en kijken hoever we komen:
x2-3y2=1997
3y2=x2-1997
y2=(x2-1997)/3
Nu maken we de observatie dat als dit een oplossing heeft voor x en y gehele getallen, dan moet x2-1997 deelbaar zijn door 3. met andere woorden:
x2 = 1997 mod 3
Aan jou de vraag, waarom heeft dit geen oplossing?
Ik denk dat je de limiet van h naar 0 vergeet. Je deelt een keer een h weg, zodat je h2 + 3xh + 3x2 overhoudt. De limiet van h naar 0 nemen zorgt er voor dat alleen de 3x2 overblijft.quote:Op dinsdag 12 april 2011 15:02 schreef Pipo1234 het volgende:
[..]
Nee die formule heb ik ook. Ik probeer het te gebruiken voor een differentatie van X3. Bij X2 kom ik er door H weg te strepen. Maar bij X3 houd ik op de volgende manier 3X2 en 3X over: h3 + 3x2h + 3xh2 + x3 - x3)/h
Ik snap dat even niet. Betekent dit dat de lim h->0 de 3xh2 wegstreept omdat deze 0 is? Er zit toch 3X in, of is dat 3xh en geen 3x?quote:Op dinsdag 12 april 2011 15:29 schreef freiss het volgende:
[..]
Ik denk dat je de limiet van h naar 0 vergeet. Je deelt een keer een h weg, zodat je h2 + 3xh + 3x2 overhoudt. De limiet van h naar 0 nemen zorgt er voor dat alleen de 3x2 overblijft.
Even tussendoor, snap je wat er bedoelt wordt met de limiet? Dat is namelijk wel redelijk belangrijk om dit echt te begrijpenquote:Op dinsdag 12 april 2011 15:58 schreef Pipo1234 het volgende:
[..]
Ik snap dat even niet. Betekent dit dat de lim h->0 de 3xh2 wegstreept omdat deze 0 is? Er zit toch 3X in, of is dat 3xh en geen 3x?
Differentiëren is geen 'wegstrepen'. Je bepaalt van een functie y = f(x) eerst het differentiequotiënt:quote:Op dinsdag 12 april 2011 15:58 schreef Pipo1234 het volgende:
[..]
Ik snap dat even niet. Betekent dit dat de lim h->0 de 3xh2 wegstreept omdat deze 0 is? Er zit toch 3X in, of is dat 3xh en geen 3x?
quote:Op dinsdag 12 april 2011 15:58 schreef Pipo1234 het volgende:
[..]
Ik snap dat even niet. Betekent dit dat de lim h->0 de 3xh2 wegstreept omdat deze 0 is? Er zit toch 3X in, of is dat 3xh en geen 3x?
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |