Waarom teleurgesteld? En tot maandag wachten hoeft ook niet, het net lost al je problemen op. De kubische vergelijking die je krijgt kun je herleiden tot:quote:Op vrijdag 18 maart 2011 17:35 schreef ColdFeet het volgende:
Aaaaamai. Nou, ik geloof dat de uitwerking ervan ook in het boek staat dat nog op mijn werk ligt, ik zoek het maandag wel opIk dacht dat ik het zelf nog wel zou kunnen... Diep teleurgesteld
Hier is de link naar mijn exel bestand.quote:quote:
PosterImage
■ PosterImage is successfully producing high end plotter systems. It
is a growing market.
The dataset (see PosterImage_Exercise_B.xlsx) represents the
sales volume (in units per week), which is accurately recorded on
weekly basis over a period of 3 years.
■ Make a sales forecast for the next year.
■ Production capacity is limited to 300 pieces per week.
■ Management has decided not to increase production capacity but to
anticipate (calculated) shortage by producing in advance.
■ Make a forecast of the required production level and the inventory level.
■ Write a two page management report (full story,
Ik zou de vraag op een Engelstalig forum posten als ik jou was.quote:Op vrijdag 18 maart 2011 21:40 schreef MichaelV8888 het volgende:
Heb problemen met mijn opdracht voor quantitative business methods, het gaat over forecasting.. ik krijg mijn graph maar niet goed..
Onthoud de elementaire rij-operaties.quote:Op zaterdag 19 maart 2011 13:49 schreef IrishBastard het volgende:
Ok, ik zie het punt. Nou snap ik alleen nog niet helemaal hoe dit toe te passen is. Als ik om het even waar een rij wissel, wordt de uitkomst het tegenovergestelde van wat het eerst was?
quote:Op zaterdag 19 maart 2011 14:19 schreef Siddartha het volgende:
[..]
Onthoud de elementaire rij-operaties.
Als je een matrix A hebt, en ik verwissel een rij dan word de determinant A=(-1)detA'
(Met A' is de matrix A waar je de rij van verwisselt hebt.)
Dus ook als je nu weer een rij verwisselt van A', dan krijg je:
Det A'= (-1)detA''
etc.
Er zijn legio boeken over getaltheorie geschreven, op alle mogelijke niveaus. Misschien is "Getaltheorie voor beginners" van Frits Beukers iets voor je?quote:Op zaterdag 19 maart 2011 21:14 schreef minibeer het volgende:
Ik zou graag wat meer willen leren over de getaltheorie. Kan iemand me een boek aanraden? (Ik heb nu alleen middelbare-school-niveau wiskunde gehad)
Had hem ook gevonden, is ook niet zo duur, dus misschien ga ik die wel inslaanquote:Op zaterdag 19 maart 2011 21:32 schreef thabit het volgende:
[..]
Er zijn legio boeken over getaltheorie geschreven, op alle mogelijke niveaus. Misschien is "Getaltheorie voor beginners" van Frits Beukers iets voor je?
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |