Dat wist ik, maar ik zie niet hoe ze dat hier gebruiken...?quote:Op zaterdag 22 januari 2011 00:39 schreef keesjeislief het volgende:
[..]
De cardinaliteit is belangrijk omdat sigma-algebra's gesloten zijn onder aftelbare verenigingen (dat is ook de reden om die B' te introduceren naast B, aftelbaarheid van Q gebruiken). Wat is O^n?
Ik begrijp je vraag geloof ik niet. Het doel van (*) is om te bewijzen dat U \in O^n => U \in \sigma(B') (**). Dit impliceert immers \sigma(O^n) \subset \sigma(B'), en omdat je al had \sigma(B') \subset \sigma(B) \subset \sigma(O^n) volgt de conclusie \sigma(B')=\sigma(B) = \sigma(O^n). Om (**) te bewijzen begin je met een U uit O^n, en gebruik je de definitie van open vz. en de dichtheid van Q in R om (*) af te leiden. Maar het rechterlid van (*) is een aftelbare vereniging van elementen uit B', en is dus een element van \sigma(B'). Dus ook U \in \sigma(B'), en hiermee is (**) bewezen.quote:Op zaterdag 22 januari 2011 00:42 schreef BasementDweller het volgende:
[..]
Dat wist ik, maar ik zie niet hoe ze dat hier gebruiken...?
O^n is de family of open sets in R^n
Ah, bij dat dikgedrukte zat het probleem. Ik snap het nu, bedanktquote:Op zaterdag 22 januari 2011 01:09 schreef keesjeislief het volgende:
[..]
Ik begrijp je vraag geloof ik niet. Het doel van (*) is om te bewijzen dat U \in O^n => U \in \sigma(B') (**). Dit impliceert immers \sigma(O^n) \subset \sigma(B'), en omdat je al had \sigma(B') \subset \sigma(B) \subset \sigma(O^n) volgt de conclusie \sigma(B')=\sigma(B) = \sigma(O^n). Om (**) te bewijzen begin je met een U uit O^n, en gebruik je de definitie van open vz. en de dichtheid van Q in R om (*) af te leiden. Maar het rechterlid van (*) is een aftelbare vereniging van elementen uit B', en is dus een element van \sigma(B'). Dus ook U \in \sigma(B'), en hiermee is (**) bewezen.
Je bent bijna klaar, je kunt nog gebruiken dat sin^2(x)+cos^2(x)=1 en dan komt jouw uitdrukking uit op 2/cos^2(2x) (je doet de quotientregel verkeerd om waardoor je een extra minteken hebt) en dat klopt (want sec(x)=1/cos(x)).quote:Op zaterdag 22 januari 2011 09:34 schreef Fsmxi het volgende:
De afgeleide van tan(2x)
tan(2x)=sin(2x)/cos(2x)
Een breuk, dus (nat-tan)/(n^2)
nat = sin(2x)*-2sin(2x)
tan = cos(2x)*2cos(2x)
(nat-tan)/n^2 = (-2sin2(2x) - 2cos2(2x))/(cos2(2x)
Alleen is dit niet goed aldus wolfram alpha. Alleen werkt wolfram alpha ook met de sec etc. en daar snap ik niets van, dus kan iemand uitleggen waar het fout gaat?
Delta-y is gelijk aan ynieuw - youd, dat geeft bij x=1 dus ynieuw (dat is de huidige y, hier dus 5) minus youd (dat is de vorige y-waarde, hier dus 4) dus 5-4=1quote:Op zondag 23 januari 2011 15:06 schreef Hendroit het volgende:
Gegeven is de formule y= -x2+2x+4
Teken het toenamendiagram op [-1,5] met stapgrootte 1
[ link | afbeelding ]
(klik om te vergroten)
waarom is delta-y 3 bij x=0 en y=4?
waarom is delya-y 1 bij x=1 en y=5
enz.
Haha nu snap ik het, bedankt!quote:Op zondag 23 januari 2011 15:22 schreef M.rak het volgende:
[..]
Delta-y is gelijk aan ynieuw - youd, dat geeft bij x=1 dus ynieuw (dat is de huidige y, hier dus 5) minus youd (dat is de vorige y-waarde, hier dus 4) dus 5-4=1
Voor de intercept b kijk je naar lim(x-> oo) (x+1)(x+2)/(x-3) - x = lim(x-> oo) (x²+3x-6)/x - x²/x = lim(x-> oo) (3x-6)/x = 3. Ik zou daarom zeggen y = x+3 ipv y = x+6.quote:Op zondag 23 januari 2011 15:16 schreef M.rak het volgende:
Even een kort vraagje over deze formule:
[ afbeelding ]
Het gaat om de scheve asymptoten van deze functie, volgens mij zijn die
[ afbeelding ]
en
[ afbeelding ]
maar volgens het antwoordmodel zijn die y=x+6 en y=-x-6.
Als ik ze plot lijkt het echter ook y=x en y=-x te zijn, zit ik ergens helemaal fout, of klopt het antwoordmodel niet? (het is een antwoordmodel voor een tentamen van vorig jaar, je zou toch mogen verwachten dat dat klopt..)
Ik heb die wat anders gedaan, namelijk lim(x-> oo) (x2+3x+2)/(x-3)-x(x-3)/(x-3)=lim(x-> oo) 2/(3-x)=0quote:Op zondag 23 januari 2011 15:43 schreef GlowMouse het volgende:
[..]
Voor de intercept b kijk je naar lim(x-> oo) (x+1)(x+2)/(x-3) - x = lim(x-> oo) (x²+3x-6)/x - x²/x = lim(x-> oo) (3x-6)/x = 3. Ik zou daarom zeggen y = x+3 ipv y = x+6.
1=(1+x)/(1+x)quote:Op woensdag 26 januari 2011 12:57 schreef Quyxz_ het volgende:
Ik zit even vast...
Hoe kom ik van
1 - 1 / (1+x)
naar
x / (1+x)
?
Ja dit dacht ik in het begin dus ook, maar blijkbaar moet het wel zo. Onderbouwen kan ik het idd niet. Volgens mij doen ze * de afgeleide van 6y3, en y3 is constant dus nog een keer maal 6?quote:Op woensdag 26 januari 2011 18:44 schreef TheLoneGunmen het volgende:
Of ik kan het niet meer, of dat programma van je faalt al op de eerste regel./
[ afbeelding ]
Alle tussenstappen in je screenshot zijn fout, alleen het eindantwoord klopt. Welke joker heeft dit geschreven?quote:Op woensdag 26 januari 2011 18:27 schreef appelsjap het volgende:
Ik heb een probleempje met de afgeleide, ik snap niet hoe ze bij de volgende vraag aan dat antwoord komen.
Ik kom er zelf niet uit want ik vind het totaal niet logisch, waarom wordt de 144 gedeeld door 2 en dus 72 van gemaakt, en waarom wordt er van 54 90 gemaakt, is mij totaal onduidelijk. Iemand die dit kan toelichten?
[ afbeelding ]
www.mathxl.comquote:Op woensdag 26 januari 2011 18:49 schreef Riparius het volgende:
[..]
Alle tussenstappen in je screenshot zijn fout, alleen het eindantwoord klopt. Welke joker heeft dit geschreven?
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |