over welke tijdsduur,, het kan 2 jaar duren als je elk jaar 50.000 erop zet.. u get my point ?quote:Op woensdag 13 februari 2008 16:21 schreef Rammstino het volgende:
Stel ik wil 100000 euro sparen
Dit wil ik doen door ieder jaar een vast bedrag op mijn spaarrekening te zetten.
Ik krijg 6% rente op mijn spaarrekening
Wat is dan het bedrag dat ik ieder jaar op mijn spaarrekening moet zetten?
bvd
Ik heb em aangepast. 30 jaar dusquote:Op woensdag 13 februari 2008 16:38 schreef warchaser44 het volgende:
[..]
over welke tijdsduur,, het kan 2 jaar duren als je elk jaar 50.000 erop zet.. u get my point ?
Dit is uit te rekenen met standaardformules voor annuïteiten, welke in je in elk boek over financiële wiskunde zult vinden (of op het web), maar he is ook vrij eenvoudig af te leiden.quote:Op woensdag 13 februari 2008 16:21 schreef Rammstino het volgende:
Stel ik wil 100000 euro sparen over een tijdsduur van 30 jaar
Dit wil ik doen door ieder jaar een vast bedrag op mijn spaarrekening te zetten.
Ik krijg 6% rente op mijn spaarrekening
Wat is dan het bedrag dat ik ieder jaar op mijn spaarrekening moet zetten?
bvd
Is dit de volledige opgave? Ik vind het moeilijk om alles goed te vatten? X(1)?quote:Op woensdag 13 februari 2008 16:45 schreef MrBrightside het volgende:
Ik heb een wiskunde handelingsdeel waar ik de ballen van snap. Het onderwerp is schatten. Ik snap het eigenlijk gelijk al niet.
Schatter S = X(1) + X(7) - 1
De opgaven gaan over de Lotto, waarbij getallen van 1 t/m 45 voorkomen.
Opgave 2.2:
a. De schatter S geeft de uitkomst 45 als X(1) +X(7) = 46. Dat kan op verschillende manieren, bijvoorbeeld X(1) = 1 en X(7) = 45 of X(1) = 2 en X(7) = 44, enzovoort. Laat zien dat P(X(1) = 1 en X(7) = 45 = (43 boven 5) / (45 boven 7) en bereken ook P(X(1) = 2 en X(7) = 44).
Nouja, de eerste regel uitleg snap ik, maar daarna? Iemand?
Wat bedoel je met "het aantal getallen" schatten? Sorry, misschien moet ik wat vaker op de lotto spelenquote:Op woensdag 13 februari 2008 20:22 schreef MrBrightside het volgende:
Ja het is dus de bedoeling dat je het aantal getallen schat. Maargoed, die weet je dus al want dat is 45. X1 is het kleinste getal (dus 1) en X(7) is het grootste getal, dus 45.
Ik snap ook niet zo goed wat de schatter doet... De toevalsvariabelen geven (in oplopende volgorde, naar ik aanneem) de 7 getrokken cijfers in de lotto. Je trekt dus (blijkbaar) van 1 t/m 45. De kansen kan ik op zich wel uitleggen.quote:Op woensdag 13 februari 2008 16:45 schreef MrBrightside het volgende:
Ik heb een wiskunde handelingsdeel waar ik de ballen van snap. Het onderwerp is schatten. Ik snap het eigenlijk gelijk al niet.
Schatter S = X(1) + X(7) - 1
De opgaven gaan over de Lotto, waarbij getallen van 1 t/m 45 voorkomen.
Opgave 2.2:
a. De schatter S geeft de uitkomst 45 als X(1) +X(7) = 46. Dat kan op verschillende manieren, bijvoorbeeld X(1) = 1 en X(7) = 45 of X(1) = 2 en X(7) = 44, enzovoort. Laat zien dat P(X(1) = 1 en X(7) = 45 = (43 boven 5) / (45 boven 7) en bereken ook P(X(1) = 2 en X(7) = 44).
Nouja, de eerste regel uitleg snap ik, maar daarna? Iemand?
Super!! je bent mijn heldquote:Op woensdag 13 februari 2008 18:33 schreef Iblis het volgende:
[..]
Dit is uit te rekenen met standaardformules voor annuïteiten, welke in je in elk boek over financiële wiskunde zult vinden (of op het web), maar he is ook vrij eenvoudig af te leiden.
Over 30 jaar wil je ¤100.000 hebben. Ik neem ook even aan dat je 30 betalingen wilt doen, waarbij de eerste op tijdstip 0 valt. Op het 31e tijdstip (na 30 jaar) doe je geen betaling, je vangt alleen rente dat laatste jaar.
Als je bedrag x inlegt, dan krijg je, in totaal:
x*(1.06)^30 + x*(1.06)^29 + ... + x*(1.06)
= x * ( 1.06^30 + 1.06^29 + ... + 1.06)
Nu komt de standaard-truc om die som te herschrijven, zie b.v. Mathworld:
= x * (1.06 - 1.06^31)/(-0.06) = x*83.802
We willen hebben: x * 83.802 = 100,000, dus => x = 1193.29
De afgeleide is (ln(x) +1)x^x, die kun je vinden door de vergelijking slim te herschrijven, zoals hier wordt gedaan. De primitieve is volgens mij niet uit te drukken in standaardfuncties.quote:Op zaterdag 16 februari 2008 12:00 schreef Borizzz het volgende:
Wie weet de afgeleidige (en primitieve) van f(x)=x^x?
Bij mijn weten valt dit niet binnen de standaardregels voor primitiveren en differentieren.
(voor mij al weer een aantal jaren terug).
Voor logaritmes geldt: log(a*b) = log(a) + log(b). B.v. log(1000) = log(10*100) = log(10) + log(100) = 1 + 2 = 3. Zo ook ln(x^x) = ln(x*x*...*x) = ln(x) + ln(x) + ... + ln(x) = x ln(x)quote:Op zaterdag 16 februari 2008 12:37 schreef Borizzz het volgende:
Goede site; al is het lang geleden voor me. Graag wat toelichting op de voldende twee stappen; het staat er wel bij (weliswaar kort) maar t is zóó ver weggezakt!
ln y = ln (x^x) naar ln y = x ln (x)
Links is inderdaad wat lastig. Je hebt gezegd: y = x^x, ofwel y(x) = x^x, om even expliciet aan te geven dat y een functie van x is. En nu willen we y' (of wel dy/dx) weten, maar goed, dat is een lastige vorm. De truc is nu om de functie zo te herschrijven dat we die y' handig verkrijgen. Wat van belang is om je te realiseren is echter dat y een functie van x is, en geen constante hier.quote:y '(1 / y) = ln x + x(1 / x) = ln x + 1 , where y ' = dy/dx
als je nl. links naar x differentieert krijg je toch 0? rechts gaat met productregel; dat zie ik wel in.
Bedankt!
Misschien even verdergaan met wat ik zei :quote:Op zaterdag 16 februari 2008 13:13 schreef Borizzz het volgende:
Zuiderbuur: kun je hier eens een rekenvoorbeeld van neerzetten? Interessant.
| Forum Opties | |
|---|---|
| Forumhop: | |
| Hop naar: | |