quote:
Op dinsdag 29 november 2005 18:17 schreef ExtraWaskracht het volgende:[..]
Deze volg ik niet. Zoals je het opschrijft stapel je de volgende tegel met de helft op de vorige tegel. Stel dan dat je gaat stapelen met elke keer een tegel op de helft van vorige tegel. Begin daarbij links en stapel dan door naar rechts, stapel zo denkbeeldig 3 tegels op de onderste tegel. Dan is het gewicht rechts van het kantelpunt van de op een na onderste tegel groter dan dat er links gecompenseerd wordt.
Je kunt het zwaartepunt beïnvloeden met je tegels.
Door meer tegels als contragewicht te gebruiken verleg je je zwaartepunt.
![]()
Uitleg:
We noemen de bovenste tegel T1, en de tegel daaronder T2, enzovoorts. We laten de toren naar rechts overhellen.
Hoeveel kan T1 uitsteken t.o.v. T2 zodat T1 precies in evenwicht hangt?
We noemen de breedte van de tegel d. Het gedeelte wat T1 links uitsteekt t.o.v. van zijn draaipunt op T2 noemen we X1. Het gedeelte wat T1 rechts uitsteekt t.o.v. zijn draaipunt op T2 noemen we d-X1. De massa van de tegel doet niet terzake en laten we dus weg. Ook de zwaartekrachtversnelling laten we weg omdat die niet van invloed is behalve dat hij in werkelijkheid aanwezig moet zijn.
De Momenten links en rechts van het draaipunt (dat op d-X1 ligt) moeten gelijk zijn. Omdat de tegel een homogene massa is die niet dikker of dunner naarmate je meer naar buiten of binnen komt, kunnen we alle massa veronderstellen aanwezig te zijn in het punt 0,5 d respectievelijk 0,5 (d-X1).
Het Moment links wordt daarmee: 0,5 x X1. Het Moment rechts wordt zo 0,5 (d-X1). De Momenten zijn gelijk omdat de zaak in evenwicht hangt, waaruit volgt X1 = 0,5 d. Tegel T1 steekt X1-d uit, dus T1 steekt 1/2 tegel uit t.o.v. de onderliggende tegel T2.
Hoeveel kan T2 uitsteken t.o.v. T3 zodat T2 precies in evenwicht hangt (met T1 nog aanwezig)?
Ook hier geldt weer dat de Momenten links en rechts van het draaipunt, dat op d-X2 ligt, gelijk moeten zijn.
Het Moment links van het draaipunt: 0,5 x X2. Het Moment rechts van het draaipunt bestaat nu evenwel uit twee componenten, te weten voortvloeiend uit T2 én voortvloeiend uit T1. Beiden moeten bij elkaar worden opgeteld en gelijk zijn aan het Moment links. De eerste component is 0,5 x (d-X2). De tweede component, namelijk de bijdrage van T1, is: 0,5 x (d-X2). Omdat T1 precies in evenwicht ligt mag alle massa worden verondersteld in één punt te liggen, nl. het draaipunt van T1 op T2.
Links en rechts zijn gelijk dus 0,5 x X2 = 0,5 x (d-X2) + (d-X2). Oftewel 4 X2 = 3 d, en X2 = 0,75 d. Tegel T2 steekt dus 1/4 tegel uit t.o.v. de onderliggende tegel T3.
Totaal steekt de toren nu uit 1/2 + 1/4 = 0,75 tegel.
Hoeveel kan T3 uitsteken t.o.v. T4 zodat T3 precies in evenwicht hangt (met T1 en T2 nog aanwezig)?
Er geldt weer hetzelfde als boven, echter nu liggen er twee tegels bovenop waarvan het zwaartepunt mag worden geacht te liggen in d-X3. De zaak ligt immers in evenwicht.
De vergelijking wordt hiermee 0,5 x X3 = 0,5 x (d-X3) + 2 x (d-X3). Oftewel X3 = d � X3 + 4 d � 4 X3, hetgeen oplevert 6 X3 = 5 d, dus X3 = 5/6 d. Tegel T3 steekt dus 1/6 tegel uit t.o.v. de onderliggende tegel T4.
De toren steekt nu uit 1/2 + 1/4 + 1/6 = 0,91 tegel.
Hoeveel kan T4 uitsteken t.o.v. T5 zodat T4 precies in evenwicht hangt (met T1, T2, en T3 nog aanwezig)?
0,5 x X4 = 0,5 x (d-X4) + 3 x (d-X4) hetgeen oplevert 8 X4 = 7 d, dus X4 = 7/8 d. Tegel T4 steekt dus 1/8 tegel uit t.o.v. de onderliggende tegel T5.
De toren steekt nu uit 1/2 + 1/4 + 1/6 + 1/8 = 1,04 tegel.
Hoeveel kan T5 uitsteken t.o.v. T6 zodat T5 precies in evenwicht hangt (met T1, T2, T3, en T4 nog aanwezig)?
0,5 x X5 = 0,5 x (d-X5) + 4 x (d-X5) hetgeen oplevert X5 = 9/10 d. Tegel T5 steekt dus 1/10 tegel uit t.o.v. de onderliggende tegel T6.
De toren steekt nu uit 1/2 + 1/4 + 1/6 + 1/8 + 1/10 = 1,14 tegel.
Deze reeks loopt natuurlijk gewoon door. Tegel 11 overschrijdt de 1,5 en tegel 31 overschrijdt de 2. Bij tegel 1000 zit je al op 3,7427. Bij tegel 5000 zit je op de 5,7432.
* 11:15, restate my assumptions: 1. Mathematics is the language of nature. 2. Everything around us can be represented and understood through numbers. 3. If you graph these numbers, patterns emerge. Therefore: There are patterns everywhere in nature.*