Ik heb op reddit ook een topic gestart hierover
https://www.reddit.com/r/(...)content=share_buttonVeel discussie. Inmiddels 204 reacties. Veel afgekraakt. De temperatuur zou niet hoger kunnen worden dan de temperatuur op de oppervlakte van de zon. Veel vinden het een leuk idee.
Ik heb een discussie met een drzowie. Ik neem aan een dr in Astrofysics.
Ik ga de discussie hier plaatsen.
------
Drzowie:
Optical concentration cannot produce temperatures higher than the surface of the Sun (roughly 6000 K). There are two reasons for that. (A) if you could, you could violate the 2nd Law of thermodynamics, producing a perpetual motion machine of the first kind (free energy machine); (B) more directly, concentrating optics preserve the *emissivity* of the light -- the power per unit area, per unit solid angle. In other words, if you use a magnifying glass to burn (say) an ant in sunlight, from the ant's perspective the Sun didn't get *intrinsically brighter*, it got *apparently larger* (subtending a large angle in the sky). Since there are only 4π steradians in a complete sphere, you can't concentrate sunlight by more than a factor of [4π / (apparent-size-of-Sun)]. The Sun subtends 6x10^-5 steradians when seen from Earth, so you can only concentrate sunlight optically by up to a factor of roughly ~~16,000~~200,000. That will, under ideal circumstances, get your hot absorbing structure up to temperatures of about 6000K (at which point it will be emitting, via the σT^4 law, just as much energy as it receives) -- which is no coincidence, it is the temperature of the solar photosphere.
You can concentrate the energy from sunlight into higher temperature objects, but only through "normal" heat engine mechanics -- you'd have to convert sunlight to electricity, say, and then use that to drive an accelerator (e.g. a tokamak) or a set of high powered lasers (e.g. the NIF) or something of that general nature.
*Edit: 16,000 gets you to one steradian; there are just over 12 (4π) in a full sphere.*
-------
Mijn reactie
Homelander5000
Imagine a parabolic mirror with an area of 16,000 mm2 (diameter about 14 cm) directing sunlight on an area of about 1 mm2. Now imagine another parabolic mirror with an area of 16,000 mm2 right next to it. Are you saying it is impossible to direct the light on the same 1 mm2 area?
Imagine millions of these small parabolic mirrors directing sunlight on this 1 mm2 area.
(Ik heb 16.000 geschreven omdat drzowie eerst had gezegd dat je zonnelicht niet verder kan focussen dan een factor 1 op 16.000. Dit heeft hij/zij later gecorrigeerd naar 1 op 200.000)
---------
Reactie drzowie
The parabolic mirror you describe would have a focal length of about 12~~mm~~*cm*, so it would expand the solar image on the spot from 0.5 degree diameter to about 120 degree diameter from the point of view of a probe at the spot (i.e. the Sun would appear 120 degrees across when viewed in the parabolic mirror, from the point of view of an unfortunate ant on that one square millimeter). You could get maybe 3-4 more beams to come in from different angles, without blocking the incident sunlight -- but at that point you would run out of angles for the incoming rays to occupy, so you couldn't scale up to a million of those things.
---------
Mijn reactie
Homelander5000
Can you show me the calculation or the link to the calculation? Formulas?
-----------
Reactie drzowie
Well, the Sun is just under 0.5 degrees across, which is (0.5)(π/180)=9 milliradians -- so making an image 1mm across requires a focal length of (1mm/9e-3), or 110mm -- which is 11cm (which I rounded up to 12) Note I made a typo and said "12mm" instead of "12cm". A lens 14cm across, from 11cm away, subtends just over 60 degrees -- but your 14cm diameter mirror will wrap slightly around the probe, subtending roughly twice that.
-----------
Mijn reactie
Homelander5000
How about putting a concave lens at the focal point that turns the beam into a straight parallel beam of sunlight?
---------
Hier heb ik al 11 uur geen antwoord op gehad. Dus ik heb nog een reactie geplaatst.
Homelander5000
Drzowie, how about placing a concave lens at the focalpoint of the parabolic mirror with an area of 200,000 mm2 that turns the converging sunlight into a parallel beam of sunlight with a cross-sectional area of 1 mm2? This beam hits an area at a certain distance. Now near this parabolic mirror you place millions of equal parabolic mirrors with a concave lens at the focal point and all of them direct the beam at the same area of 1 mm2. Can you reach higher temperatures than the temperature of the surface of the sun now? Now we are placing millions of images of the sun on top of eachother.
---------
Een concave lens is trouwens een holle lens. Ik had bijna hollow lens geschreven. Ik heb moeten opzoeken wat een holle lens in het Engels is.
Ik heb het idee dat ik de discussie aan het winnen ben.
Wat denken jullie?