Als je (x,y)=(0,0) invult komt er niet zomaar 0 uit he, want je deelt door 0. ("is flauwekul"?quote:Op donderdag 23 december 2010 00:48 schreef oblomov07 het volgende:
Gegeven: een kromme K: x^4 - 4x^2 + 4y^2 = 0
Het differentiaalquotient is = (4x^3 - 8x) / (-8y)
Nu wil ik de richtingscoefficient van deze kromme in de oorsprong weten. Als je voor x en y 0 invoert kom je uiteraard op rc = 0. Dit is echter niet de werkelijke richtingscoefficient. Hoe krijg ik de echte rc? Kan iemand mij hiermee helpen? Bij voorbaat dank!
Ok. Je weet ook wat zaken over hoe de lengte van zijden van koordenvierhoeken met elkaar in verband staan, ik dacht dat dat misschien nuttig zou kunnen zijn. Ik had ook nog heel even zitten kijken of je kunt gebruiken dat de stelling voor bepaalde driehoeken heel simpel te zien is, en dan bekijken of het waar blijft onder een vervorming. Maar dat schoot ook niet erg op.quote:Op woensdag 22 december 2010 20:14 schreef Borizzz het volgende:
[..]
De opgave is ook niet snel op te lossen en inderdaad zoals Riparius zegt niet via koordenvierhoeken.
Het handigst is volgens mij om het via het middelpunt M van de omgeschreven cirkel te benaderen. De beide middelloodlijnen van zijden BC en AC snijden elkaar immers. Verder de geijkte oppervlakte formules voor driehoeken gebruiken en loodlijnen op de bissectrices neerlaten. En dan gebruikmaken van gelijkvormige driehoeken die dan ontstaan.
Maar het gaat mij om een 'slimme', 'creatieve' oplossing zonder al dat gereken.
Klopt, mijn fout.quote:Op donderdag 23 december 2010 01:37 schreef BasementDweller het volgende:
Welk differentiaalquotient precies ? En als je x=y=0 invoert, deel je door 0.
Ik heb even niet de tijfd om het netjes op te schrijven, maar als je bijv. de limiet voor x gaat naar 0 van het dq wilt weten, moet je bedenken dat je kijkt naar een quotient van twee termen die naar 0 gaan. De waarde van de limiet hangt dus helemaal af van de snelheid waarmee beide termen naar 0 gaan. Als je nu m.b.v. de formule voor K even y uitdrukt in x en die uitdrukking invult in je dq dan zul je zien dat teller als langzaamste term -8x heeft, terwijl de noemer iets krijgt als 2x(2+x/4), dus het dq heeft dan -8/4 als limiet.quote:Op donderdag 23 december 2010 01:44 schreef oblomov07 het volgende:
[..]
Klopt, mijn fout.Ik krijg iig niet het gewenste antwoord.
Hoe bedoel je welk differntiaalquotient precies?
Staan daar boven de eerste term nu twee accentjes, het is dus een dv? Je weet dat alle oplossing geschreven kunnen worden als de som van een particuliere oplossing met alle homogene oplossingen (d.w.z alle oplossingen van het systeem met rechterlid gelijk aan 0)? De vraag is natuurlijk hoe je een particuliere oplossing vindt, maar gelukkig heb je rechts een sinus, en links een tweede afgeleide en de functie zelf. Het ligt dan voor de hand om voor u een sinus te proberen, omdat die na twee keer differentieren ook weer een sinus oplevert.quote:Op donderdag 23 december 2010 20:29 schreef Holy_Goat het volgende:
Hey allemaal.... Ik heb een vraagje.
[ afbeelding ]
Ik ben dynamica 2 aan het leren, en ik kom niet uit het volgende.
Al een paar pagina's tekst volgeschreven, maar helaas, geen oplossing.
Het gaat me met name om de aanpak dus niet zo zeer het antwoord.
U1 en U2 zijn als functie van t overigens.
Met rechts van de streep constanten heb ik geen moeite, maar met deze functie van t er in lukt het niet meer
Dat splitsen heeft niet zoveel voordeel denk ik. Als je kijkt naar je dv zie je dat je twee functies u1 en u2 zoekt zodanig dat lineaire combinaties van beide functies en hun tweede afgeleiden een sinus kunnen opleveren en een constante. Het ligt voor de hand om dan iets te proberen als u1(t) = a*sin(omega*t)+b en u2(t) = c*sin(omega*t)+d, voor nader te bepalen a, b, c en d. Namelijk, het nemen van tweede afgeleides geeft je weer sinussen terug, en b en d kun je gebruiken om de constante L te bereiken.quote:Op vrijdag 24 december 2010 09:39 schreef Holy_Goat het volgende:
Has het is een dv... Moeilijkheid is niet de homogene oplossing inderdaad.
Ik had wel al gedacht aan het volgende, splits term rechts op in een vector met een constante en een vector met alleen die sinus. Die kun je namelijk optellendan, dus de twee bijbehorende particuliere oplossingen kun je dan ook optellen. Het constante deel is dan niet moeilijk, rest alleen nog de oplossing voor w * sin (omega * t)...
Bedankt voor de reactie. Ik heb het onderwerp 'Limieten' nog niet behandeld, dat komt pas in het hoofdstuk hierna te pas.quote:Op donderdag 23 december 2010 03:05 schreef keesjeislief het volgende:
[..]
Ik heb even niet de tijfd om het netjes op te schrijven, maar als je bijv. de limiet voor x gaat naar 0 van het dq wilt weten, moet je bedenken dat je kijkt naar een quotient van twee termen die naar 0 gaan. De waarde van de limiet hangt dus helemaal af van de snelheid waarmee beide termen naar 0 gaan. Als je nu m.b.v. de formule voor K even y uitdrukt in x en die uitdrukking invult in je dq dan zul je zien dat teller als langzaamste term -8x heeft, terwijl de noemer iets krijgt als 2x(2+x/4), dus het dq heeft dan -8/4 als limiet.
Hangt van het type onderwijs af, volgens mij leerde ik op de middelbare school veel eerder differentieren dan dat ik iets van limieten zag. Daar is imho ook niet zoveel mis mee, differentieren is een belangrijk concept voor een hoop leerlingen en valt intuitief goed op te pikken zonder (echte) kennis van limieten.quote:Op woensdag 29 december 2010 18:32 schreef VanishedEntity het volgende:
Slecht hoor; imho hoor je zaken als limieten en continuïteit te krijgen voordat je aan differentiëren begint, of iig nadat je de basis (conceptuele uitleg en mathematische principes, standaardformules voor polynomen, en som-, product- en quotiëntregels) gehad hebt.
True, was bij mij ook met geval, maar ik vraag me af of ik ook de opgave die oblomov hier neerpostte op had kunnen lossen zonder grondige onderricht in limieten, continuïteit en differentieerbaarheid, en de bijbehorende oplossingstechnieken als substitutie, delen door de hoogste macht in de noemer en L'Hôstipal. Vandaar mijn kritische opmerking.quote:Op woensdag 29 december 2010 19:03 schreef keesjeislief het volgende:
[..]
Hangt van het type onderwijs af, volgens mij leerde ik op de middelbare school veel eerder differentieren dan dat ik iets van limieten zag. Daar is imho ook niet zoveel mis mee, differentieren is een belangrijk concept voor een hoop leerlingen en valt intuitief goed op te pikken zonder (echte) kennis van limieten.
Ik neem aan dat je een lineaire deelruimte bedoelt? Het is niet de bedoeling dat je hier even al je huiswerkopgaven dumpt, dit is echt direct uit de definitie van een lin. deelruimte te zien (waarbij ik maar even aanneem dat je niet 'de vector' bedoelt maar 'de vz. van vectoren ...')...quote:Op donderdag 30 december 2010 21:18 schreef Dale. het volgende:
@VanishedEntity hehehe ja was eigenlijk ook wel simpel was gewoon te moeilijk aan het denken. Maar ander vraagje... waarom is de onderstaande vector geen deelruimte van R^3.
[ afbeelding ]
Ja klopt de set van vectoren en ja lineaire deelruimte. Maar ik zie niet in waarom deze (volgens het antwoorden boekje) niet in R^3 ligt aan de hand van de definitie van de lin. deelruimte. R^3 is oneindig groot dus kan ik gewoon ook een oneindig grote vector kiezen van mij apart dus dan [a, b, 2]T met a,b in R die ik met iedere andere vector kan vermeningvuldigen, het resultaat ligt altijd in R^3. Zelfde geldt voor een scalaire vermeningvuldiging.quote:Op donderdag 30 december 2010 21:34 schreef keesjeislief het volgende:
[..]
Ik neem aan dat je een lineaire deelruimte bedoelt? Het is niet de bedoeling dat je hier even al je huiswerkopgaven dumpt, dit is echt direct uit de definitie van een lin. deelruimte te zien (waarbij ik maar even aanneem dat je niet 'de vector' bedoelt maar 'de vz. van vectoren ...')...
Wat is de definitie van een lineaire deelruimte?quote:Op donderdag 30 december 2010 21:54 schreef Dale. het volgende:
[..]
Ja klopt de set van vectoren en ja lineaire deelruimte. Maar ik zie niet in waarom deze (volgens het antwoorden boekje) niet in R^3 ligt aan de hand van de definitie van de lin. deelruimte. R^3 is oneindig groot dus kan ik gewoon ook een oneindig grote vector kiezen van mij apart dus dan [a, b, 2]T met a,b in R die ik met iedere andere vector kan vermeningvuldigen, het resultaat ligt altijd in R^3. Zelfde geldt voor een scalaire vermeningvuldiging.
en ps. zie TT + hier tussen zaten 50 andere vragen hoor
Laat V een vectorruimte zijn en W een niet lege subset van V. Als W een vectorruimte is met respect tot de operaties in V, dan is W een lineaire deelruimte van V.quote:Op donderdag 30 december 2010 22:01 schreef keesjeislief het volgende:
[..]
Wat is de definitie van een lineaire deelruimte?
probeer eens u = v = [1;2;2], c=2.quote:Op donderdag 30 december 2010 22:16 schreef Dale. het volgende:
[..]
Laat V een vectorruimte zijn en W een niet lege subset van V. Als W een vectorruimte is met respect tot de operaties in V, dan is W een lineaire deelruimte van V.
Vervolgens dus controleren of die operaties kloppen.
- Als de vectoren u en v willekeurige elementen zijn in V, dan u + v is in V.
- Als de vector u een willekeurig element van V is en c is een reel getal, dan c*u is in V.
En dat geldt volgens mij... ik kan geen vector v bedenken waarbij u+v buiten V ligt, en geen c waarbij c*u buiten V ligt.
V = R^3
quote:Op donderdag 30 december 2010 22:34 schreef GlowMouse het volgende:
[..]
probeer eens u = v = [1;2;2], c=2.
In V is de eis, niet in IR³.quote:Op donderdag 30 december 2010 22:16 schreef Dale. het volgende:
- Als de vectoren u en v willekeurige elementen zijn in V, dan u + v is in V.
- Als de vector u een willekeurig element van V is en c is een reel getal, dan c*u is in V.
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |