nee dat stond er niet, geen haakjes in de originele formule. dus altijd als je een formule hebt met e en een x en een +(normaal getal) kun je dat gewoon buiten beschouwing laten (aangezien de afgeleide daarvan altijd 0 is) en hoef je die niet te betrekken in f(x) of g(x)? want als je de productregel toepast op een formule zonder e doe je dat wel toch?quote:Op donderdag 26 november 2009 21:45 schreef GlowMouse het volgende:
Als er x(e^x + 4) stond, had je gelijk. Nu heb je f(x)g(x)+4 met f(x)=x en g(x)=e^x. De afgeleide is dus de afgeleide van f(x)g(x) plus de afgeleide van 4.
dat doe je snelquote:Op donderdag 26 november 2009 21:58 schreef GlowMouse het volgende:
dat is 3x^5 + 4 en heeft afgeleide 15x^4.
Je doet het verkeerd. De kans dat je 2x blauw achter elkaar trekt is 1/2 * 2/3. 3x blauw achter elkaar gaat met kans 1/2*2/3*3/4.quote:Op donderdag 26 november 2009 22:01 schreef Dzy het volgende:
Kansrekeningvraagje, nouja een klein onderdeel ervan...
Je hebt een vaas met een rode en een blauwe knikker, als je rood pakt ben je klaar, als je blauw pakt moet je hem terugleggen met nog een blauwe erbij. De kans dat je na 1 keer trekken klaar bent is dus 1/2, dat je met precies 2 keer trekken klaar bent (1-1/2)*(1/3) = 1/6, de kans dat je na 3 keer trekken klaar bent is (1-(1/2+1/6))*(1/4) enzovoorts. Nu moet ik aantonen dat de kans dat je in n keer klaar bent gelijk is aan 1/(n(n+1)). Die 1/(n+1) is logisch, dat is de kans dat je als je in die positie bent beland je een rode bal trekt. Die 1/n is de kans dat je nog niet klaar was bij de eerste n-1 trekkingen, dit is opgebouwd uit:
1 - (1/2 + 1/6 + 1/10 ...) = 1 - Som van i=1 tot n ( 1 / (4i - 2 ) ) en dit moet dus gelijk zijn aan 1/n, maar hier kom ik niet uit. Hoe kan ik dit aantonen?
Oja, ja, ik denk dat ik het wel begrijp nu, en dat je een normaal getal alleen hoeft op te nemen in de afgeleide als hij tussen haakjes staat. en bij bvquote:Op donderdag 26 november 2009 22:16 schreef GlowMouse het volgende:
Niet echt, je kunt gewoon alles doen zolang het logisch isBijvoorbeeld
x^2 . 3x^3 + 4
kan ook met de productregel:
2x * 3x^3 + x^2 * 9x^2
= 6x^4 + 9x^4
= 15x^4.
ja, daar staat ie. oke bedankt voor je hulpquote:Op donderdag 26 november 2009 22:24 schreef GlowMouse het volgende:
als die +2 onder de deelstreep staat wel ja.
Het is inderdaad zo triviaal als je hier beweert.quote:Op vrijdag 27 november 2009 22:38 schreef Hanneke12345 het volgende:
Ik heb een inproductruimte en een lineaire afbeelding. Vraag is "laat zien dat een zelfgeadjungeerde afbeelding normaal is", kan ik dit doen met representatieve matrix? Dus L=L* en LL*=L*L? Het wordt nogal triviaal op die manier, geloof ik. Of moet ik dit doen met de inproductruimte dat L<x,y>=<x,Ly>? `
Forum Opties | |
---|---|
Forumhop: | |
Hop naar: |