abonnementen ibood.com bol.com Gearbest
pi_173366886
quote:
0s.gif Op woensdag 23 augustus 2017 17:55 schreef Janneke141 het volgende:

[..]

Parallel betekent zoiets als 'dezelfde kant op', met lengte heeft het niets te maken. Tramrails lopen parallel.

Parallelle, of evenwijdige, lijnen hebben geen snijpunt. Als je KL en MN in gedachten doortrekt zie je eenvoudig dat die elkaar ergens boven het figuur moeten snijden, dus die zijn niet evenwijdig.
Dank,

Bij deze nog een vraag:

WPF0Oq2.png

Op het eerste oog kun je concluderen dat als AB = BC = CD dat dan ook DE = EF= FG, toch? Zo ja waar kun je dat uit concluderen? Omdat AB = BC = CD wil dat nog niet zeggen dat het geldt voor de lijn DG. Wat is de interpretatie en gedachtegang dat ook DE = EF = FG?

En hoe los je dit op?
  donderdag 24 augustus 2017 @ 18:11:48 #102
37950 JAM
Sic transit gloria mundi.
pi_173367274
Je ziet hier een paar keer dezelfde driehoek. Als AB = BC = CD, dan volgt daaruit dat de driehoek CDE gelijkvormig is aan BDF en ADG. Heb je daar wat aan?
"The world will note that the first atomic bomb was dropped on Hiroshima, a military base."
  donderdag 24 augustus 2017 @ 18:15:17 #103
37950 JAM
Sic transit gloria mundi.
pi_173367331
Dit zijn wel het soort opgaven die vooral tot doel hebben zelf tot inzicht te komen. In plaats van de antwoorden te verklappen, lijkt het mij beter dat je ons eerst deelgenoot maakt van je eigen pogingen.
"The world will note that the first atomic bomb was dropped on Hiroshima, a military base."
pi_173368117
quote:
0s.gif Op donderdag 24 augustus 2017 18:11 schreef JAM het volgende:
Je ziet hier een paar keer dezelfde driehoek. Als AB = BC = CD, dan volgt daaruit dat de driehoek CDE gelijkvormig is aan BDF en ADG. Heb je daar wat aan?
Dat klopt inderdaad en dat kun je vooral zien doordat niet alleen AB = BC = CD maar ook omdat ze alle drie een hoek van 90 graden hebben. Ik ben vooral benieuwd hoe ik kan zien of DE = EF = FG, want als dat het geval is, dan kun je concluderen dat de lengte (of hoogte) van DE en EF en FG alle drie gelijk zijn aan h.

De lengte van DF zal dan 2h zijn en die van DG dan 3h.

De oppervlakte kun je berekenen door 0.5 * h * b, waarbij b staat voor base (ofwel lengte).

Wat is b dan? Laten we zeggen dat de lengte van CE gelijk is aan b, dan kun je ook concluderen dat de lengte voor BF gelijk is aan 2b en die van AG aan 3b.

Dat wetende zou je kunnen concluderen dat 0.5*3b*3h en omdat de oppervlakte van CDE al vastgesteld is op 42 is het gewoon een kwestie van invullen en moet je uitkomen op 378, maar dit kan alleen als je ook weet dat DE = EF=FG
pi_173368222
quote:
0s.gif Op donderdag 24 augustus 2017 17:49 schreef Sucuk het volgende:

[..]

Dank,

Bij deze nog een vraag:

[ afbeelding ]

Op het eerste oog kun je concluderen dat als AB = BC = CD dat dan ook DE = EF= FG, toch? Zo ja waar kun je dat uit concluderen? Omdat AB = BC = CD wil dat nog niet zeggen dat het geldt voor de lijn DG. Wat is de interpretatie en gedachtegang dat ook DE = EF = FG?

En hoe los je dit op?
Je mist een heleboel basiskennis van vlakke meetkunde om dit soort vragen vlot op te kunnen lossen en kennelijk helpt je Engelstalige boek ook niet echt. Kun je trouwens even de auteur en titel van dat boek geven? Ik wil dat boek namelijk wel eens zien.

Het beste wat je nu zou kunnen doen is een goede basiscursus vlakke meetkunde doorwerken. Ik begrijp dat je wellicht denkt dat dat niet zo belangrijk is voor je verdere studie of dat je denkt dat je daar niet de tijd voor hebt, maar je zou het toch moeten doen. Econometrie is een studie waarbij veel wiskunde komt kijken, en ook voor wat geavanceerdere onderwerpen als differentiaal- en integraalrekening is kennis van vlakke meetkunde en aanverwante elementaire onderwerpen (zoals analytische meetkunde en goniometrie) nodig om een goed inzicht te krijgen.

Ik kan je aanraden om deze tekst te downloaden, te printen, en vervolgens vanaf papier door te werken. Dan heb je een korte maar goede inleiding in de vlakke meetkunde ongeveer zoals die tot een halve eeuw geleden op school werd onderwezen.

Nu, wat je vraag betreft, je hebt hier gelijkvormige driehoeken CDE, BDF en ADG. Er zijn verschillende kenmerken op grond waarvan je kunt concluderen dat twee driehoeken gelijkvormig zijn, en n van die kenmerken is als twee driehoeken twee gelijke hoeken hebben, en dat is hier het geval met de drie genoemde driehoeken. Bij gelijkvormige driehoeken zijn de lengtes van overeenkomstige zijden evenredig met elkaar, zodat we hier hebben

DC : DB : DA = DE : DF : DG

en omdat is gegeven dat

DC = CB = BA

hebben we

DC : DB : DA = 1 : 2 : 3

en daarmee ook

DE : DF : DG = 1 : 2 : 3

zodat inderdaad

DE = EF = FG

Aangezien de driehoeken CDE en ADG rechthoekig zijn met een rechte hoek in hoekpunt E resp. G, betekent dit dat de hoogte van driehoek ADG driemaal de hoogte is van driehoek CDE.

Evenzo kun je concluderen dat

CE : BF : AG = 1 : 2 : 3

zodat de basis AG van driehoek ADG dus drie maal zo lang is als de basis CE van driehoek CDE.

Welnu, je weet (hopelijk) dat de oppervlakte van een driehoek gelijk is aan het halve product van basis en hoogte van die driehoek, en aangezien zowel de basis als de hoogte van driehoek ADG elk drie maal zo groot zijn als de basis resp. de hoogte van driehoek CDE, volgt dus dat de oppervlakte van driehoek ADG negen maal zo groot is als de oppervlakte van driehoek CDE. En omdat is gegeven dat de oppervlakte van driehoek CDE gelijk is aan 42 vinden we zo dat de oppervlakte van driehoek ADG gelijk is aan 9 × 42 = 378.
pi_173388600
quote:
0s.gif Op donderdag 24 augustus 2017 18:55 schreef Riparius het volgende:
Kun je trouwens even de auteur en titel van dat boek geven? Ik wil dat boek namelijk wel eens zien.
Het komt hieruit.
pi_173391315
quote:
0s.gif Op vrijdag 25 augustus 2017 16:57 schreef Tochjo het volgende:

[..]

Het komt hieruit.
Met dank. De uitleg in het boek is rudimentair en niet geschikt voor iemand die de stof nog niet eerder heeft gehad (of deze wel ooit heeft gehad maar weer is vergeten). Ik lees hier dat het eigenlijk gaat om (een deel van) een gestandaardiseerd toelatingsexamen voor Amerikaanse Graduate Schools en dat er ook nogal wat kritiek is op de toets (zie ook hier). Zo is het niveau van de gevraagde wiskundekennis (veel) te laag vergeleken met hetgeen is vereist voor de wetenschappelijke opleidingen waar de toets nu juist voor moet worden afgelegd. Even los hiervan begrijp ik niet wat deze toets in het Nederlandse onderwijs heeft te zoeken, of het moest zo zijn dat de vragensteller de ambitie heeft om in de VS te gaan studeren.
pi_173392030
quote:
0s.gif Op donderdag 24 augustus 2017 18:55 schreef Riparius het volgende:

[..]

Je mist een heleboel basiskennis van vlakke meetkunde om dit soort vragen vlot op te kunnen lossen en kennelijk helpt je Engelstalige boek ook niet echt. Kun je trouwens even de auteur en titel van dat boek geven? Ik wil dat boek namelijk wel eens zien.

Het beste wat je nu zou kunnen doen is een goede basiscursus vlakke meetkunde doorwerken. Ik begrijp dat je wellicht denkt dat dat niet zo belangrijk is voor je verdere studie of dat je denkt dat je daar niet de tijd voor hebt, maar je zou het toch moeten doen. Econometrie is een studie waarbij veel wiskunde komt kijken, en ook voor wat geavanceerdere onderwerpen als differentiaal- en integraalrekening is kennis van vlakke meetkunde en aanverwante elementaire onderwerpen (zoals analytische meetkunde en goniometrie) nodig om een goed inzicht te krijgen.

Ik kan je aanraden om deze tekst te downloaden, te printen, en vervolgens vanaf papier door te werken. Dan heb je een korte maar goede inleiding in de vlakke meetkunde ongeveer zoals die tot een halve eeuw geleden op school werd onderwezen.

Nu, wat je vraag betreft, je hebt hier gelijkvormige driehoeken CDE, BDF en ADG. Er zijn verschillende kenmerken op grond waarvan je kunt concluderen dat twee driehoeken gelijkvormig zijn, en n van die kenmerken is als twee driehoeken twee gelijke hoeken hebben, en dat is hier het geval met de drie genoemde driehoeken. Bij gelijkvormige driehoeken zijn de lengtes van overeenkomstige zijden evenredig met elkaar, zodat we hier hebben

DC : DB : DA = DE : DF : DG

en omdat is gegeven dat

DC = CB = BA

hebben we

DC : DB : DA = 1 : 2 : 3

en daarmee ook

DE : DF : DG = 1 : 2 : 3

zodat inderdaad

DE = EF = FG

Aangezien de driehoeken CDE en ADG rechthoekig zijn met een rechte hoek in hoekpunt E resp. G, betekent dit dat de hoogte van driehoek ADG driemaal de hoogte is van driehoek CDE.

Evenzo kun je concluderen dat

CE : BF : AG = 1 : 2 : 3

zodat de basis AG van driehoek ADG dus drie maal zo lang is als de basis CE van driehoek CDE.

Welnu, je weet (hopelijk) dat de oppervlakte van een driehoek gelijk is aan het halve product van basis en hoogte van die driehoek, en aangezien zowel de basis als de hoogte van driehoek ADG elk drie maal zo groot zijn als de basis resp. de hoogte van driehoek CDE, volgt dus dat de oppervlakte van driehoek ADG negen maal zo groot is als de oppervlakte van driehoek CDE. En omdat is gegeven dat de oppervlakte van driehoek CDE gelijk is aan 42 vinden we zo dat de oppervlakte van driehoek ADG gelijk is aan 9 42 = 378.
Het boekje is erg handig, waarvoor dank!

Ik heb nog een interessante vraag omdat ik iets interessants heb gevonden (ook eerder gepost) waarvan de regel mij is ontgaan:

6W2cEWv.png

Als AC = BC betekent dat dat AB buiten de boot valt en dat dit een Isosceles Triangle is. Daarnaast heeft een driehoek (n-2)*180 graden, waarbij n het aantal angles is. Aangezien een driehoek drie hoeken heeft, is het (3-2)*180 = 180 graden.

X is te vinden door te weten dat allereerst de andere hoeken te berekenen.

Hoek 1 (hoek naast 125 graden) is 180-125 = 55 graden
Hoek 2 (bovenste en binnenste hoek van de driehoek): 55 graden omdat AC = BC en dan geldt dat de hoeken dat tegenover ieder congruente lijn hetzelfde is.

Hoek 3 (x hoek): 180-55-55 = 70.

Hoek 4 (hoek naast x hoek) : 180-70 = 110

Hoek 5 (hoek boven de driehoek en hoek boven die van 55 graden) : ook 55 graden want het zijn opposite angles

Nu blijven hoek Y en hoek 'B' over. Hoek Y en hoek 'B' zijn gelijk aan elkaar maar hoe kom ik daar achter?

Het is sowieso lager dan 250 graden, aangezien 360 - 55 - 55 = 250.

Ik zou dan zeggen 250/2 = 125 graden, maar... is er ook een alternatieve methode?
pi_173392724
quote:
0s.gif Op vrijdag 25 augustus 2017 19:59 schreef Sucuk het volgende:

[..]

Het boekje is erg handig, waarvoor dank!

Ik heb nog een interessante vraag omdat ik iets interessants heb gevonden (ook eerder gepost) waarvan de regel mij is ontgaan:

[ afbeelding ]

Als AC = BC betekent dat dat AB buiten de boot valt en dat dit een Isosceles Triangle is. Daarnaast heeft een driehoek (n-2)*180 graden, waarbij n het aantal angles is. Aangezien een driehoek drie hoeken heeft, is het (3-2)*180 = 180 graden.

Doe iets aan je notatie en aan je taalgebruik. Geen mengelmoesje van Engels en Nederlands ervan maken.

Dat AC = BC wil niet zeggen dat AB 'buiten de boot valt'. Het woord isosceles is ontleend aan het Grieks en betekent gelijkbenig. Driehoek ABC is gelijkbenig en de gelijke benen zijn AC en BC, maar dit zegt nog niets over de lengte van de basis AB. Het is heel goed mogelijk dat de lengte van de basis van een gelijkbenige driehoek gelijk is aan de lengte van elk van de benen van de gelijkbenige driehoek, en in dat geval is de driehoek tevens gelijkzijdig. Maar, hier is dat niet het geval.

De buitenhoek van 125 bij hoekpunt A in de figuur is supplementair met ∠CAB en dus hebben we

∠CAB = 180 − 125 = 55

Verder volgt uit AC = BC dat

∠CBA = ∠CAB

zodat ook

∠CBA = 55

De som van de (binnen)hoeken van een driehoek is 180, zodat

∠ACB = 180 − (∠CAB + ∠CBA) = 180 − (55 + 55) = 180 − 110 = 70

En aangezien in de figuur is gegeven dat ∠ACB = x hebben we dus x = 70.

Tenslotte, de buitenhoek van y bij hoekpunt B is supplementair met ∠CBA = 55 en dus hebben we

y = 180 − 55 = 125

Dat is alles.
pi_173393170
quote:
0s.gif Op vrijdag 25 augustus 2017 20:28 schreef Riparius het volgende:

[..]

Doe iets aan je notatie en aan je taalgebruik. Geen mengelmoesje van Engels en Nederlands ervan maken.

Dat AC = BC wil niet zeggen dat AB 'buiten de boot valt'. Het woord isosceles is ontleend aan het Grieks en betekent gelijkbenig. Driehoek ABC is gelijkbenig en de gelijke benen zijn AC en BC, maar dit zegt nog niets over de lengte van de basis AB. Het is heel goed mogelijk dat de lengte van de basis van een gelijkbenige driehoek gelijk is aan de lengte van elk van de benen van de gelijkbenige driehoek, en in dat geval is de driehoek tevens gelijkzijdig. Maar, hier is dat niet het geval.

De buitenhoek van 125 bij hoekpunt A in de figuur is supplementair met ∠CAB en dus hebben we

∠CAB = 180 − 125 = 55

Verder volgt uit AC = BC dat

∠CBA = ∠CAB

zodat ook

∠CBA = 55

De som van de (binnen)hoeken van een driehoek is 180, zodat

∠ACB = 180 − (∠CAB + ∠CBA) = 180 − (55 + 55) = 180 − 110 = 70

En aangezien in de figuur is gegeven dat ∠ACB = x hebben we dus x = 70.

Tenslotte, de buitenhoek van y bij hoekpunt B is supplementair met ∠CBA = 55 en dus hebben we

y = 180 − 55 = 125

Dat is alles.
Waarom is het supplementair? Ik ken alleen de volgende regel ''Opposite angles have equal measure and angles that have equal measure are called congruent angles. Hence, opposite angles are congruent. ''
pi_173394219
quote:
0s.gif Op vrijdag 25 augustus 2017 20:44 schreef Sucuk het volgende:

[..]

Waarom is het supplementair? Ik ken alleen de volgende regel ''Opposite angles have equal measure and angles that have equal measure are called congruent angles. Hence, opposite angles are congruent. ''
Ik denk dat je hier wat in de war wordt gebracht door de plaatsing van de letter B in de figuur. Het is juist dat overstaande hoeken gelijk zijn, maar een hoofdletter in een meetkundige figuur duidt een punt aan, en gn hoek. Om de groottes van de (binnen)hoeken bij de hoekpunten A, B, C in een driehoek ABC aan te duiden wordt traditioneel gebruik gemaakt van resp. de kleine Griekse letters α, β, γ, zoals in onderstaande figuur:

290px-Dreieck.svg.png
pi_173682883
x

[ Bericht 16% gewijzigd door Frank_Underwood op 10-09-2017 12:55:14 ]
pi_173690058
Weet iemand hoe je het volgende kunt simplificeren?

n! / (n-2)! x 2!

Hoe ga je om met n (letter termen) in factorials?
  Redactie Frontpage zondag 10 september 2017 @ 11:23:22 #114
346939 crew  Janneke141
Green, green grass of home
pi_173690108
quote:
0s.gif Op zondag 10 september 2017 11:20 schreef Sucuk het volgende:
Weet iemand hoe je het volgende kunt simplificeren?

n! / (n-2)! x 2!

Hoe ga je om met n (letter termen) in factorials?
2n(n-1), op voorwaarde dat n>2.

Of - en dat is voor de hand liggender- als er had moeten staan 'n! / ( (n-2)! 2! )' gewoon n boven 2, natuurlijk.

[ Bericht 5% gewijzigd door Janneke141 op 10-09-2017 11:52:00 ]
Opinion is the medium between knowledge and ignorance (Plato)
pi_173691255
quote:
0s.gif Op zondag 10 september 2017 11:23 schreef Janneke141 het volgende:

[..]

2n(n-1), op voorwaarde dat n>2.

Of - en dat is voor de hand liggender- als er had moeten staan 'n! / ( (n-2)! 2! )' gewoon n boven 2, natuurlijk.
Excuus.

Er moest staan:

n! / ( (n-2)! 2! )

en het antwoord is: (n(n-1))/2

Alleen ik weet niet hoe je er op moet komen...

[ Bericht 1% gewijzigd door Sucuk op 10-09-2017 12:53:39 ]
  Redactie Frontpage zondag 10 september 2017 @ 12:46:46 #116
346939 crew  Janneke141
Green, green grass of home
pi_173691311
quote:
0s.gif Op zondag 10 september 2017 12:44 schreef Sucuk het volgende:

[..]

Excuus.

Er moest staan:

n! / ( (n-2)! 2! )

en het antwoord is: n! / (( n-2)! x 2!)

Alleen ik weet niet hoe je er op moet komen...
Hier staat gewoon twee keer hetzelfde, dus geen idee wat je vraag is. Ik neem aan dat je iets met kansrekening of combinatoriek zit te doen, toch?
Opinion is the medium between knowledge and ignorance (Plato)
pi_173691455
quote:
0s.gif Op zondag 10 september 2017 12:46 schreef Janneke141 het volgende:

[..]

Hier staat gewoon twee keer hetzelfde, dus geen idee wat je vraag is. Ik neem aan dat je iets met kansrekening of combinatoriek zit te doen, toch?
Ow. Zie edit!
  Redactie Frontpage zondag 10 september 2017 @ 12:57:08 #118
346939 crew  Janneke141
Green, green grass of home
pi_173691517
quote:
0s.gif Op zondag 10 september 2017 12:53 schreef Sucuk het volgende:

[..]

Ow. Zie edit!
Als je n! uitschrijft, dan staat er n(n-1)(n-2)... x3x2x1.
Als je (n-2) uitschrijft, dan staat er (n-2)(n-3)...x3x2x1
Als je die door elkaar deelt, dan vallen alle termen tegen elkaar weg behalve n en (n-1) in de teller.
Verder stond er nog een 2! in de noemer, en dat is 2.

Dus n(n-1)/2.
Opinion is the medium between knowledge and ignorance (Plato)
pi_173691666
Hoi Wiskunde-kenners,

Ik zit met het volgende:

σp = [w2 * σA2 + 2w(1-w)*σAB + (1-w)2 * σB2 ]1/2

Simpeler opgeschreven, moet het er zo uitzien:

w*σA + (1-w)σB

Hoe kun je dit doen?

Ik heb het proberen uit te schrijven, maar ik loop helemaal vast:

[ wσA + 2w(1-w)σAσB + (1-w)σB ]1/2

[ wσA + 2wσAσB - 2wσAσB + σB - 2wσB + w*σB ]1/2

[ σA (w σA + 2wσB - 2wσB) + σB (1-w) ]1/2

en tot dusverre dus... daarna loop ik vast.

[ Bericht 1% gewijzigd door Frank_Underwood op 10-09-2017 13:21:18 ]
  Redactie Frontpage zondag 10 september 2017 @ 13:10:27 #120
346939 crew  Janneke141
Green, green grass of home
pi_173691873
quote:
0s.gif Op zondag 10 september 2017 13:03 schreef Frank_Underwood het volgende:
Hoi Wiskunde-kenners,

Ik zit met het volgende:

σp = [w2 * σA2 + 2w(1-w)*σAB + (1-w)2 * σB2 ]1/2

Simpeler opgeschreven, moet het er zo uitzien:

w*σA + (1-w)σB

Hoe kun je dit doen?

Ik heb het proberen uit te schrijven, maar ik loop helemaal vast:

[ wσA + 2w(1-w)σAσB + (1-w)σB ]

[ wσA + 2wσAσB - 2wσAσB + σB - 2wσB + w*σB ]

[ σA (w σA + 2wσB - 2wσB) + σB (1-w) ]

en tot dusverre dus... daarna loop ik vast.
Hier zit een merkwaardig product in toch?

(w.sa + (1-w)sb)^2 ?
Opinion is the medium between knowledge and ignorance (Plato)
pi_173691893
quote:
0s.gif Op zondag 10 september 2017 13:10 schreef Janneke141 het volgende:

[..]

Hier zit een merkwaardig product in toch?

(w.sa + (1-w)sb)^2 ?
In welk stuk?
  Redactie Frontpage zondag 10 september 2017 @ 13:18:39 #122
346939 crew  Janneke141
Green, green grass of home
pi_173692056
quote:
0s.gif Op zondag 10 september 2017 13:11 schreef Frank_Underwood het volgende:

[..]

In welk stuk?
In de eerste regel.

Merkwaardig product: (a+b)^2 = a^2 + 2ab + b^2.

Op de plek van de a staat in jouw geval w.sigma-A, en op de plek van de b (1-w)sigma-B.

In zijn geheel staat er dan [(a+b)^2]^1/2, wat neerkomt op (a+b) en in jouw geval dus w.sigma-A+(1-w)sigma-B.
Opinion is the medium between knowledge and ignorance (Plato)
  zondag 17 september 2017 @ 15:22:29 #123
459912 FlippingCoin
Weer zo'n kut millennial.
pi_173831245
Bij het vermenigvuldigen van matrices op de volgende manier AAT, dan moet je toch de getransponeerde A met A vermenigvuldigen, en niet A met A vermenigvuldigen en dat transponeren?

Dus AAT = (AT)A
En niet AAT = (AA)T

?
slechts gestoord door het niet gestoord willen worden
  zondag 17 september 2017 @ 15:40:26 #124
46507 thabit
schoofbinder
pi_173831729
AAT=A(AT).
  zondag 17 september 2017 @ 15:44:33 #125
459912 FlippingCoin
Weer zo'n kut millennial.
pi_173831859
quote:
0s.gif Op zondag 17 september 2017 15:40 schreef thabit het volgende:
AAT=A(AT).
Top, wederom bedankt. ^O^ _O_
slechts gestoord door het niet gestoord willen worden
abonnementen ibood.com bol.com Gearbest
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')