abonnement Unibet Coolblue
pi_140089931
quote:
0s.gif Op zondag 18 mei 2014 14:59 schreef Riparius het volgende:

[..]

Inderdaad. De opgave kwam me ook verdacht bekend voor, maar ik had deze niet in mijn database zitten. Dank voor het linkje. En wat hebben docenten toch verdomd weinig fantasie dat je jaar in jaar uit dezelfde afgezaagde opgaven langs ziet komen. Maar dat heeft ook met het armetierige aanbod aan schoolboeken te maken. Honderd jaar (of nog langer) geleden had je tientallen verschillende boeken, zelfs in zo'n klein taalgebied als het onze, nu zijn er nog maar enkele zogeheten 'methodes'.
Dat klopt, verder vind ik ook de didactiek van menigeen schoolboek om van te huilen. Zo kort mogelijk door theorie gaan, een debiel stripje erbij en vervolgens een hoop aan opgaven die uberhaupt geen samenhang met elkaar hebben.
pi_140089935
quote:
0s.gif Op zondag 18 mei 2014 15:05 schreef Riparius het volgende:

[..]

Weet je wat je nu eens moet doen? Ga nu gewoon eens goed nadenken over die hele opgave, en werk de opgave dan compleet uit, in plaats van bij elke stap te komen vragen of wij je handje vast willen houden.
OK, de vraag is: bepaal de raaklijn van f(x)=\frac{4\mathrm{ln}(x^2)-4}{x}.
1) Kijk of f(x) handiger te schrijven is -> ja, f(x)=x^{-1}(8ln(x)-4)
2) Bepaal de afgeleide, in dit geval kan dat doormiddel van de product regel: f(x) = g(x) * h(x)
g(x) = x-1
h(x) = 8ln(x)-4
g'(x) = -x-2
h'(x) = 8/x
f'(x) = g(x) * h'(x) + g'(x) * h(x) => \frac{1}{x}\cdot\frac{8}{x} + -\frac{1}{x^2} \cdot (8ln(x)-4) = \frac{8}{x^2} + \frac{-8ln(x)+4}{x^2} = \frac{-8ln(x)+12}{x^2} = \frac{-4(2ln(x)-3)}{x^2}

Dit zou hem moeten zijn, denk ik.

[ Bericht 2% gewijzigd door netchip op 18-05-2014 15:56:20 ]
pi_140089984
quote:
0s.gif Op zondag 18 mei 2014 14:51 schreef Super-B het volgende:
f (x) = | x - 1 |

f ( x) ' = 1x

f (x)'' = 1

Hoe kan ik de het nulpunt van de afgeleide hiermee berekenen? Ik kom toch echt op x=0 uit, terwijl het antwoord x = 1 is?!

Hetzelfde geldt bij

| x˛ - 1 |
pi_140089986
quote:
0s.gif Op zondag 18 mei 2014 15:13 schreef RustCohle het volgende:

[..]

Held! :)

Hoe bepaal je een afgeleide van e^|x| ?

Moet ik deze splitsen in e^-x en e^-x ?
Voor x ≥ 0 heb je e|x| = ex
Voor x < 0 heb je e|x| = e−x

Bedenk dat deze functie niet differentieerbaar is in het punt x = 0. Er zit namelijk een 'knik' in de grafiek bij x = 0, dus heb je ook geen eenduidige raaklijn aan de grafiek bij x = 0.
pi_140090058
quote:
0s.gif Op zondag 18 mei 2014 15:21 schreef Riparius het volgende:

[..]

Voor x ≥ 0 heb je e|x| = ex
Voor x < 0 heb je e|x| = e−x

Bedenk dat deze functie niet differentieerbaar is in het punt x = 0. Er zit namelijk een 'knik' in de grafiek bij x = 0, dus heb je ook geen eenduidige raaklijn aan de grafiek bij x = 0.
Oke even kijken. Het is overigens e-|x| Maar dat wordt gewoon een + bij dubbel minteken.

Even de opgave maken. Je hoort zodirect weer wat :P
pi_140090091
quote:
0s.gif Op zondag 18 mei 2014 15:18 schreef netchip het volgende:

[..]

OK, de vraag is: bepaal de raaklijn van f(x)=\frac{4\mathrm{ln}(x^2)-4}{x}.

Nee, dat is de vraag niet. Je moet de opgave toch eens beter lezen.
pi_140090174
quote:
0s.gif Op zondag 18 mei 2014 15:21 schreef Riparius het volgende:

[..]

Voor x ≥ 0 heb je e|x| = ex
Voor x < 0 heb je e|x| = e−x

Bedenk dat deze functie niet differentieerbaar is in het punt x = 0. Er zit namelijk een 'knik' in de grafiek bij x = 0, dus heb je ook geen eenduidige raaklijn aan de grafiek bij x = 0.
Ik deed het volgende:

e^- |x|

afgeleide hiervan is : e^-x - e^x

afgeleide gelijkstellen aan 0 : e^-x - e^x = 0

e^-x ( 1 + e^-x ) = 0

Dus x = -1 en x = 0
pi_140090199
quote:
0s.gif Op zondag 18 mei 2014 15:25 schreef Riparius het volgende:

[..]

Nee, dat is de vraag niet. Je moet de opgave toch eens beter lezen.
"De lijn met de vergelijking y = mx raakt de grafiek van f. Bereken de waarde(n) van m waarvoor dit het geval is." Oh, de standaard formule is y = ax+b. a = m, dus die moet ik berekenen, en b = 0.
pi_140090380
quote:
0s.gif Op zondag 18 mei 2014 15:28 schreef RustCohle het volgende:

[..]

Ik deed het volgende:

Als je nu gewoon even in WolframAlpha de grafiek van je functie bekijkt, dan zie je dat het niet klopt.
pi_140090609
quote:
0s.gif Op zondag 18 mei 2014 15:36 schreef Riparius het volgende:

[..]

Als je nu gewoon even in WolframAlpha de grafiek van je functie bekijkt, dan zie je dat het niet klopt.
Idd.. Ik heb het gezien, hoe zou ik het moeten doen ?

Wolfram Alpha heb ik namelijk niet morgen bij de hand :P
pi_140090825
quote:
0s.gif Op zondag 18 mei 2014 15:44 schreef RustCohle het volgende:

[..]

Idd.. Ik heb het gezien, hoe zou ik het moeten doen ?

Wolfram Alpha heb ik namelijk niet morgen bij de hand :P
Het is van belang dat je in de gaten houdt dat functies met een absolute waarde niet zomaar te differentiëren zijn, in ieder geval niet voor elke waarde van x uit het domein. Dat komt door die knik in de grafiek, en die komt weer doordat |x| niet kleiner dan nul kan worden. In dit geval moet je gewoon even nadenken hoe het zit. De exponent van

e−|x|

is altijd negatief, behalve als x = 0, en omdat ex monotoon stijgend is op R, betekent dit dat e−|x| een maximale waarde van e0 = 1 bereikt als x = 0. En dat is precies wat je ook in de grafiek ziet.
pi_140090827
quote:
0s.gif Op zondag 18 mei 2014 15:25 schreef Riparius het volgende:

[..]

Nee, dat is de vraag niet. Je moet de opgave toch eens beter lezen.
Hmm, twee dingen, ik snap de opdracht niet, en Wolfram Alpha zegt dat mijn afgeleide fout is, en ik heb geen idee waarom. |:(
pi_140090879
quote:
0s.gif Op zondag 18 mei 2014 15:50 schreef netchip het volgende:

[..]

Hmm, twee dingen, ik snap de opdracht niet, en Wolfram Alpha zegt dat mijn afgeleide fout is, en ik heb geen idee waarom. |:(
Je afgeleide van x-1 klopt in ieder geval niet.
pi_140091015
quote:
0s.gif Op zondag 18 mei 2014 15:50 schreef netchip het volgende:

[..]

Hmm, twee dingen, ik snap de opdracht niet, en Wolfram Alpha zegt dat mijn afgeleide fout is, en ik heb geen idee waarom. |:(
Dat dacht ik al (dat je er niet in slaagt de afgeleide correct te bepalen en dat je ook de vraagstelling niet snapt). Ga er nu maar eens rustig over nadenken, want als ik je stap voor stap naar de oplossing loods dan krijgen we alleen maar een 'oh ja' effect, en daar leer je niets van.
pi_140091170
quote:
0s.gif Op zondag 18 mei 2014 14:40 schreef Thormodo het volgende:

[..]

Door een overzicht te maken van de mogelijke punten. Dus je schrijft de extrema op en bekijkt welke waarden de functie verder nog kan aannemen.
Dat kun je niet zien uit de berekening.
quote:
0s.gif Op zondag 18 mei 2014 14:40 schreef Thormodo het volgende:

[..]

Door een overzicht te maken van de mogelijke punten. Dus je schrijft de extrema op en bekijkt welke waarden de functie verder nog kan aannemen.
Dat kun je niet zien uit de berekening.
quote:
0s.gif Op zondag 18 mei 2014 14:41 schreef Super-B het volgende:

[..]

Zou je hier een voorbeeld bij kunnen geven bij x^4 - 2x˛ ?

Dit is zowat het laatste bladzijde en dan ben ik wel klaar voor de toets. *O*
pi_140091204
quote:
0s.gif Op zondag 18 mei 2014 15:50 schreef Riparius het volgende:

[..]

Het is van belang dat je in de gaten houdt dat functies met een absolute waarde niet zomaar te differentiëren zijn, in ieder geval niet voor elke waarde van x uit het domein. Dat komt door die knik in de grafiek, en die komt weer doordat |x| niet kleiner dan nul kan worden. In dit geval moet je gewoon even nadenken hoe het zit. De exponent van

e−|x|

is altijd negatief, behalve als x = 0, en omdat ex monotoon stijgend is op R, betekent dit dat e−|x| een maximale waarde van e0 = 1 bereikt als x = 0. En dat is precies wat je ook in de grafiek ziet.
aha! Bij absolute waarde is er altijd sprake van een knik en hierdoor is er maar 1 extreme waarde? En dat is dan het knikpunt welke dan een maximum of een minimum kan zijn? Bij een minimum is het dan het globale randminimum toch?

Maar is hier trouwens bij e−|x| sprake van een globale randmaximum of een globale maximum?
pi_140091372
quote:
0s.gif Op zondag 18 mei 2014 15:10 schreef Riparius het volgende:

[..]

De eerste:

1 + ln x = 0
ln x = −1
x = e−1

De tweede:

ex + xex = 0
ex(1 + x) = 0

een e-macht is nooit nul, dus houden we over

1 + x = 0
x = −1
Is er hier niet sprake van een randmaximum of iets dergelijks, zo ja hoezo>?
pi_140091509
( ln x)˛

Afgeleide d.m.v. productregel, maar eerst herschrijven tot:

(ln x) (ln x)

Productregel toepassen:

1/x * ln x + ln x * 1/x

Herschrijven van de productregel afgeleide:

(ln x) / x + (ln x) / x

Herschrijven in de volgende vorm:

(ln x + ln x) / x

Hoe los ik het verder op om zo de nulpunten te berekenen?
pi_140091544
Afgeleide van 4ln(x2), zou je kunnen zeggen dat is 8ln(x) met als gevolg dat de afgeleide 8/x is. Maar wat als x negatief is?
pi_140091812
quote:
0s.gif Op zondag 18 mei 2014 16:01 schreef RustCohle het volgende:

[..]

aha! Bij absolute waarde is er altijd sprake van een knik en hierdoor is er maar 1 extreme waarde?
Er zijn best wel ingewikkelder functies te bedenken waarvoor dit niet opgaat, maar die zul je wel niet krijgen op je toets.
quote:
En dat is dan het knikpunt welke dan een maximum of een minimum kan zijn? Bij een minimum is het dan het globale randminimum toch?
Ik begrijp niet goed waarom je hier opeens met de term globaal randminimum aan komt zetten. Een randminimum of randmaximum heb je aan de rand van het domein als dat een gesloten interval is. Maar dat is bij jouw voorbeeld niet aan de orde, want de functie is gedefinieerd voor elke x ∈ R.
quote:
Maar is hier trouwens bij e−|x| sprake van een globale randmaximum of een globale maximum?
Je hebt wel een globaal maximum van e0 = 1 bij x = 0, maar x = 0 zit niet aan de rand van het domein van de functie. Sterker nog, het domein is R, dus er is geen rand (begin- of eindpunt) van het domein. En dan kan er ook geen randminimum of randmaximum zijn, noch globaal, noch lokaal.
pi_140091923
quote:
0s.gif Op zondag 18 mei 2014 16:18 schreef Riparius het volgende:

[..]

Er zijn best wel ingewikkelder functies te bedenken waarvoor dit niet opgaat, maar die zul je wel niet krijgen op je toets.

[..]

Ik begrijp niet goed waarom je hier opeens met de term globaal randminimum aan komt zetten. Een randminimum of randmaximum heb je aan de rand van het domein als dat een gesloten interval is. Maar dat is bij jouw voorbeeld niet aan de orde, want de functie is gedefinieerd voor elke x ∈ R.

[..]

Je hebt wel een globaal maximum van e0 = 1 bij x = 0, maar x = 0 zit niet aan de rand van het domein van de functie. Sterker nog, het domein is R, dus er is geen rand (begin- of eindpunt) van het domein. En dan kan er ook geen randminimum of randmaximum zijn, noch globaal, noch lokaal.
Ow oke. Het is duidelijk ;).

( ln x)˛

Afgeleide d.m.v. productregel, maar eerst herschrijven tot:

(ln x) (ln x)

Productregel toepassen:

1/x * ln x + ln x * 1/x

Herschrijven van de productregel afgeleide:

(ln x) / x + (ln x) / x

Herschrijven in de volgende vorm:

(ln x + ln x) / x

Hoe los ik het verder op om zo de nulpunten te berekenen?
pi_140092040
quote:
0s.gif Op zondag 18 mei 2014 16:09 schreef RustCohle het volgende:
( ln x)˛

Afgeleide d.m.v. productregel, maar eerst herschrijven tot:

(ln x) (ln x)

Productregel toepassen:

1/x * ln x + ln x * 1/x

Herschrijven van de productregel afgeleide:

(ln x) / x + (ln x) / x

Herschrijven in de volgende vorm:

(ln x + ln x) / x

Hoe los ik het verder op om zo de nulpunten te berekenen?
Merk op dat je dit nog kunt schrijven als

2·ln(x)/x

Je had natuurlijk ook de kettingregel kunnen gebruiken, dan krijgen we

d(((ln(x))2)/dx = d(((ln(x))2)/d(ln(x)) · d(ln(x))/dx = 2·ln(x)·(1/x) = 2·ln(x)/x

Nulpunten berekenen van de afgeleide:

2·ln(x)/x = 0

Bedenk dat een breuk alleen nul is als de teller nul is terwijl de noemer niet nul is. Dus krijgen we

ln(x) = 0

x = 1
pi_140092278
quote:
0s.gif Op zondag 18 mei 2014 16:25 schreef Riparius het volgende:

[..]

Merk op dat je dit nog kunt schrijven als

2·ln(x)/x

Je had natuurlijk ook de kettingregel kunnen gebruiken, dan krijgen we

d(((ln(x))2)/dx = d(((ln(x))2)/d(ln(x)) · d(ln(x))/dx = 2·ln(x)·(1/x) = 2·ln(x)/x

Nulpunten berekenen van de afgeleide:

2·ln(x)/x = 0

Bedenk dat een breuk alleen nul is als de teller nul is terwijl de noemer niet nul is. Dus krijgen we

ln(x) = 0

x = 1
Thnks. Kun je het ook doen zonder herschrijving? Want de herschrijving heb ik niet begrepen.. Wel natuurlijk dat je die 2 aan de links kan neerzetten als getal ipv exponent, maar het is mij niet duidelijk als je de kettingregel gebruikt dat het

2 * ln(x) * (1/x) moet doen, want je moet de afgeleide van de f(x) hebben en deze samenvoegen met g(x) en deze samen vermenigvuldigen met de afgeleide van g(x)

Maar bij 2 * ln(x) is er niks afgeleid?
pi_140092915
quote:
0s.gif Op zondag 18 mei 2014 16:31 schreef RustCohle het volgende:

[..]

Thnks. Kun je het ook doen zonder herschrijving? Want de herschrijving heb ik niet begrepen.. Wel natuurlijk dat je die 2 aan de links kan neerzetten als getal ipv exponent, maar het is mij niet duidelijk als je de kettingregel gebruikt dat het

2 * ln(x) * (1/x) moet doen, want je moet de afgeleide van de f(x) hebben en deze samenvoegen met g(x) en deze samen vermenigvuldigen met de afgeleide van g(x)

Maar bij 2 * ln(x) is er niks afgeleid?
Dat er niets is afgeleid lijkt maar zo. Je hebt hier een samengestelde functie, want we nemen van x eerst de natuurlijke logaritme, dat is ln(x), en dan kwadrateren we dit nog eens om (ln(x))2 te krijgen. Het is dus een samenstelling waarbij de eerste functie de natuurlijke logaritme is en de tweede functie de kwadrateerfunctie.

Het wordt waarschijnlijk duidelijker als we even een 'tussenvariabele' u gebruiken.

Je hebt eerst:

(1) u = ln(x)

en dan

(2) y = u2

en samen geeft dit y = u2 = (ln(x))2, dus

(3) y = (ln(x))2

Nu moeten we bij (3) dy/dx bepalen, en dat kunnen we doen door eerst naar de twee afzonderlijke functies te kijken, dus naar (1) en (2). Nu levert (1) op

du/dx = 1/x

en (2) levert op

dy/du = 2u

Je ziet dat er ook bij (2) wel degelijk wordt gedifferentieerd, want de afgeleide van u2 naar u is 2u. Nu hebben we volgens de kettingregel

dy/dx = dy/du · du/dx

en dus vinden we

dy/dx = 2u·(1/x)

Maar nu weten we uit (1) dat u = ln(x), dus vervangen we die u weer door ln(x) en zo hebben we uiteindelijk

dy/dx = 2·ln(x)·(1/x)

dus

dy/dx = 2·ln(x)/x

Bij het 'gewone' gebruik van de kettingregel doe je precies hetzelfde, maar dan is die 'tussenvariabele' impliciet. Je voert dan als het ware alleen een mentale substitutie uit.

[ Bericht 0% gewijzigd door Riparius op 19-05-2014 02:21:50 ]
pi_140093205
quote:
0s.gif Op zondag 18 mei 2014 16:48 schreef Riparius het volgende:

[..]

Dat er niets is afgeleid lijkt maar zo. Je hebt hier een samengestelde functie, want we nemen van x eerst de natuurlijke logaritme, dat is ln(x), en dan kwadrateren we dit nog eens om (ln(x))2 te krijgen. Het is dus een samenstelling waarbij de eerste functie de natuurlijke logaritme is en de tweede functie de kwadrateerfunctie.

Het wordt waarschijnlijk duidelijker al we even een 'tussenvariabele' u gebruiken.

Je hebt eerst:

(1) u = ln(x)

en dan

(2) y = u2

en samen geeft dit y = u2 = (ln(x))2, dus

(3) y = (ln(x))2

Nu moeten we bij (3) dy/dx bepalen, en dat kunnen we doen door eerst naar de twee afzonderlijke functies te kijken, dus naar (1) en (2). Nu levert (1) op

du/dx = 1/x

en (2) levert op

dy/du = 2u

Je ziet dat er ook bij (2) wel degelijk wordt gedifferentieerd, want de afgeleide van u2 naar u is 2u. Nu hebben we volgens de kettingregel

dy/dx = dy/du · du/dx

en dus vinden we

dy/dx = 2u·(1/x)

Maar nu weten we uit (1) dat u = ln(x), dus vervangen we die u weer door ln(x) en zo hebben we uiteindelijk

dy/dx = 2·ln(x)·(1/x)

dus

dy/dx = 2·ln(x)/x

Bij het 'gewone' gebruik van de kettingregel doe je precies hetzelfde, maar dan is die 'tussenvariabele' impliciet. Je voert dan als het ware alleen een mentale substitutie uit.
Jij bent fucking geniaal!
abonnement Unibet Coolblue
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')