abonnementen ibood.com bol.com Coolblue
  zondag 3 november 2013 @ 22:14:53 #1
332405 DrNick
"Jonge adonis"
pi_132872433
registreer om deze reclame te verbergen
Vorige deel: [Bèta overig] 'Huiswerk- en vragentopic'.

Post hier weer al je vragen, passies, trauma's en andere dingen die je uit je slaap houden met betrekking tot de vakken:

• Natuurkunde
• Informatica
• Scheikunde
• Biologie
• Algemene Natuurwetenschappen
• ... en alles wat verder in de richting komt.

Van MBO tot WO, hier is het topic waar je een antwoord kunt krijgen op je vragen.

Opmaak: met de [tex]-tag kun je Latexcode in je post opnemen om formules er mooier uit te laten zien (uitleg).
Op zaterdag 31 december 2016 01:19 schreef DeZwabber het volgende:
*Inwoner met een Zeeuwse achtergrond.
Op dinsdag 30 juni 2015 22:14 schreef Trollscience het volgende:
pas goed op jezelf :*
  zondag 3 november 2013 @ 22:15:34 #2
332405 DrNick
"Jonge adonis"
pi_132872477
quote:
0s.gif Op zondag 3 november 2013 22:13 schreef boyv het volgende:
edit:

*paste* http://www.scholieren.com/praktische-opdracht/18168

Deze jongedame gebruikt andere concentraties bij de titratie, maar zie de kaliumjodaatoplossing van 0,03M. Daar verschillen jullie wel een (ahum) factor 10. Heb je de opdracht nog?
Exactly my thought idd. Was geen opdracht, eigen PO :P
Op zaterdag 31 december 2016 01:19 schreef DeZwabber het volgende:
*Inwoner met een Zeeuwse achtergrond.
Op dinsdag 30 juni 2015 22:14 schreef Trollscience het volgende:
pas goed op jezelf :*
pi_132873364
Kan het momenteel even niet uitleggen, maar voer

Aantal mmol IO3- dat gereageerd heeft = 0,001M * 6,73mL

eens hier in

http://calculator.tutorvi(...)rity-calculator.html
  zondag 3 november 2013 @ 22:41:46 #4
332405 DrNick
"Jonge adonis"
pi_132873953
registreer om deze reclame te verbergen
quote:
0s.gif Op zondag 3 november 2013 22:31 schreef boyv het volgende:
Kan het momenteel even niet uitleggen, maar voer

Aantal mmol IO3- dat gereageerd heeft = 0,001M * 6,73mL

eens hier in

http://calculator.tutorvi(...)rity-calculator.html
fbcb0f4894.png?
Op zaterdag 31 december 2016 01:19 schreef DeZwabber het volgende:
*Inwoner met een Zeeuwse achtergrond.
Op dinsdag 30 juni 2015 22:14 schreef Trollscience het volgende:
pas goed op jezelf :*
  zondag 3 november 2013 @ 22:42:30 #5
332405 DrNick
"Jonge adonis"
pi_132874006
Dat is 6.73*10^-6
Op zaterdag 31 december 2016 01:19 schreef DeZwabber het volgende:
*Inwoner met een Zeeuwse achtergrond.
Op dinsdag 30 juni 2015 22:14 schreef Trollscience het volgende:
pas goed op jezelf :*
pi_132893762
Ik kom bij een twee vragen niet uit:

SPOILER
Om spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.
Gaat om vraag 2. Vraag a en c kan ik gek genoeg wel beantwoorden, maar b niet. En hoe ik c bereken vind ik een beetje raar. Ik denk dat het zo moet, maar ik kan de redenatie niet vinden. Mijn instinct zegt om dit te doen:

Klem.Spanning schakeling 1: 29.4 volt - hier hoort 6 A bij
Klem.Spanning schakeling 2: 28.2 volt - hier hoort 2 A bij

Verschil in spanning: 1.2 volt
Verschil in stroom: 4 A
Inwendige weerstand: 1.2/4 = 0.3 ohm

En dat klopt ook, alleen moet je eerst vraag 2b beantwoorden. Ik weet dat het ems te berekenen is met: Klem.Spanning=Bronspanning - Inwendige weerstand * stroom. Echter bij een ems mag je de klem.spanning gelijkstellen aan de bronspanning.

Volgens het antwoordmodel is het antwoord op 2b, 30 volt.

Volgende vraag:

SPOILER
Om spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.
Gaat om vraag 5c en 5d. Ik zou voor vraag 5c om een parallelschakeling kiezen. Het probleem waar ik tegenaan loop is welke stroom ik moet gebruiken. In een parallelschakeling is Itotaal=I1+I2+I3+In.

Bij vraag 5d heb ik de gegevens van vraag 5c nodig.
pi_132897090
registreer om deze reclame te verbergen
quote:
0s.gif Op maandag 4 november 2013 16:57 schreef DefinitionX het volgende:
Ik kom bij een twee vragen niet uit:

SPOILER
Om spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.
Gaat om vraag 2. Vraag a en c kan ik gek genoeg wel beantwoorden, maar b niet. En hoe ik c bereken vind ik een beetje raar. Ik denk dat het zo moet, maar ik kan de redenatie niet vinden. Mijn instinct zegt om dit te doen:
Je moet niet je instinct gebruiken maar de Wet van Ohm. Die ken je toch wel?

Je berekent eerst de klemspanning van de batterij (spanningsbron). Die bedraagt in het eerste geval

U = I·R = 6·4,7 = 28,2 V

en in het tweede geval

U = I·R = 2·14,7 = 29,4 V

Noem de inwendige weerstand van je spanningsbron Ri, dan treedt over deze inwendige weerstand bij een stroomsterkte I een spanningsval Ui = I·Ri op. De EMS van de spanningsbron is constant, zodat moet gelden

28,2 + 6·Ri = 29,4 + 2·Ri

en dus

4·Ri = 29,4 − 28,2
4·Ri = 1,2
Ri = 0,3 Ω

De EMS van de spanningsbron is dus 29,4 + 2·0,3 = 30 V.
quote:
Volgende vraag:

SPOILER
Om spoilers te kunnen lezen moet je zijn ingelogd. Je moet je daarvoor eerst gratis Registreren. Ook kun je spoilers niet lezen als je een ban hebt.
Laat eerst maar eens zien wat je tot nu toe hebt berekend. Je bepaalt eerst de stroomsterkte voor één lampje als dat ene lampje normaal brandt. Als je n lampjes parallel schakelt en aansluit op de spanningsbron dan loopt er door elk lampje evenveel stroom. De klemspanning van de batterij moet dalen tot 6 volt, en je kunt gemakkelijk uitrekenen bij welke stroom dat het geval zal zijn, omdat de EMS en de inwendige weerstand van de batterij zijn gegeven.

[ Bericht 0% gewijzigd door Riparius op 04-11-2013 18:47:57 ]
pi_132930830
quote:
0s.gif Op maandag 4 november 2013 18:39 schreef Riparius het volgende:

[..]

Je moet niet je instinct gebruiken maar de Wet van Ohm. Die ken je toch wel?

Je berekent eerst de klemspanning van de batterij (spanningsbron). Die bedraagt in het eerste geval

U = I·R = 6·4,7 = 28,2 V

en in het tweede geval

U = I·R = 2·14,7 = 29,4 V

Noem de inwendige weerstand van je spanningsbron Ri, dan treedt over deze inwendige weerstand bij een stroomsterkte I een spanningsval Ui = I·Ri op. De EMS van de spanningsbron is constant, zodat moet gelden

28,2 + 6·Ri = 29,4 + 2·Ri

en dus

4·Ri = 29,4 − 28,2
4·Ri = 1,2
Ri = 0,3 Ω

De EMS van de spanningsbron is dus 29,4 + 2·0,3 = 30 V.
Dank u!

quote:
[..]

Laat eerst maar eens zien wat je tot nu toe hebt berekend. Je bepaalt eerst de stroomsterkte voor één lampje als dat ene lampje normaal brandt. Als je n lampjes parallel schakelt en aansluit op de spanningsbron dan loopt er door elk lampje evenveel stroom. De klemspanning van de batterij moet dalen tot 6 volt, en je kunt gemakkelijk uitrekenen bij welke stroom dat het geval zal zijn, omdat de EMS en de inwendige weerstand van de batterij zijn gegeven.
Ik moet eerlijk zeggen dat ik niet zo heel veel van deze opgave begrijp, maar ik zal mijn berekeningen posten:

Opgave 5a: P = I * U, I= P/U en dus 2.1/6 en dus 0.35 A
Opgave 5b: Deze heb ik ook fout, want het antwoord is 0.45 A en ik heb 0.48 A:

I = Ub/(Ri + Rlampje) = 9/(1.5+(6/0.35)) = 0.48 A

Opgave 5c: Een parallelschakeling dus.

Opgave 5d: Het antwoord is 19 watt

Met uw uitleg heb ik gebruik gemaakt van:

Uk=Ub - Ri*I
-Ri*I=Uk-UB
Ri*I=-Uk+Ub
I= 2 A

Dit moet dus verdeeld worden over iedere tak van de p-schakeling. Ik weet dat ieder lampje 0.45 A nodig heeft als hij aangesloten is. Dus dan heb je 2/0.45=40/9 lampjes.

Het vermogen van de batterij is 9*2=18 watt
Het vermogen van alle lampjes bijelkaar is: (6*0.45)*40/9 =12 watt

Volgens mij valt 12 watt weg omdat het vermogen van alle lampjes gewoon gelijkstaat aan wat de batterij hen totaal geeft en dat 18 watt is.

Ik mis nog 1 watt.
pi_132931100
Riparius heeft mij uitleg gegeven over een stelselvergelijking opstellen bij vraag 2d, deze heb ik als volgt kunnen beantwoorden:

29.4 + 2 Ri = Ub = I
28.2 + 6 Ri = Ub = II

II*3 - I geeft:

88.2 + 6 Ri = 3Ub
28.2 + 6 Ri= Ub

Afhalen van elkaar geeft

60 = 2Ub
Ub= 30 volt

En Ri kun je dan dan berekenen door de Ub in een van de voorgaande formules in te vullen (bijv: 28.2 + 6 Ri= Ub).
pi_132931465
quote:
0s.gif Op dinsdag 5 november 2013 17:22 schreef DefinitionX het volgende:

[..]

Dank u!

[..]

Ik moet eerlijk zeggen dat ik niet zo heel veel van deze opgave begrijp, maar ik zal mijn berekeningen posten:

Opgave 5a: P = I * U, I= P/U en dus 2,1/6 en dus 0,35 A

Inderdaad, dit klopt. Maar bedenk ook dat je dit antwoord verderop nodig hebt bij deze opgave!
quote:
Opgave 5b: Deze heb ik ook fout, want het antwoord is 0,45 A en ik heb 0,48 A:

I = Ub/(Ri + Rlampje) = 9/(1,5+(6/0,35)) = 0,48 A
Dit klopt, althans afgerond op twee decimalen. Je berekent hier de som van de weerstanden van het lampje en de inwendige weerstand van de batterij. De EMS gedeeld door deze weerstand geeft dan volgens de Wet van Ohm de stroomsterkte in de stroomkring. Het antwoordmodel klopt niet, of men heeft het antwoord naar beneden afgerond op eenheden van 50 mA.
quote:
Opgave 5c: Een parallelschakeling dus.
Juist. Bij een serieschakeling zouden de lampjes nooit een spanning van 6 volt kunnen krijgen, en die hebben ze wel nodig om normaal te kunnen branden.
quote:
Opgave 5d: Het antwoord is 19 watt

Met uw uitleg heb ik gebruik gemaakt van:

Uk=Ub - Ri*I
-Ri*I=Uk-UB
Ri*I=-Uk+Ub
I= 2 A

Dit moet dus verdeeld worden over iedere tak van de p-schakeling. Ik weet dat ieder lampje 0,45 A nodig heeft als hij aangesloten is. Dus dan heb je 2/0,45=40/9 lampjes.

Het vermogen van de batterij is 9*2=18 watt
Het vermogen van alle lampjes bijelkaar is: (6*0,45)*40/9 =12 watt

Volgens mij valt 12 watt weg omdat het vermogen van alle lampjes gewoon gelijkstaat aan wat de batterij hen totaal geeft en dat 18 watt is.

Ik mis nog 1 watt.
Hier vergis je je. Je hebt bij a) namelijk berekend dat er door een lampje 0,35 A stroom loopt als het lampje normaal brandt, en dus niet 0,45 A of 0,48 A. Van dit gegeven moet je nu gebruik maken.
pi_132931665
quote:
0s.gif Op dinsdag 5 november 2013 17:30 schreef DefinitionX het volgende:
Riparius heeft mij uitleg gegeven over een stelselvergelijking opstellen bij vraag 2d, deze heb ik als volgt kunnen beantwoorden:

29.4 + 2 Ri = Ub = I
28.2 + 6 Ri = Ub = II

II*3 - I geeft:

88.2 + 6 Ri = 3Ub
28.2 + 6 Ri= Ub

Afhalen van elkaar geeft

60 = 2Ub
Ub= 30 volt

En Ri kun je dan dan berekenen door de Ub in een van de voorgaande formules in te vullen (bijv: 28.2 + 6 Ri= Ub).
Inderdaad, dat is het helemaal.

Het is overigens niet fout om op het examen eerst Ri te berekenen en dan Ub, zoals ik hierboven doe, als je maar duidelijk aangeeft hoe je te werk gaat. Bij de beantwoording van deelvraag c) kun je dan aangeven dat je Ri al bij b) hebt berekend en nogmaals het antwoord Ri = 0,3 Ω herhalen, want je moet wel formeel antwoord geven op de vraag.
pi_132932047
Super! Ik zat te zoeken naar andere vergelijkingen toen ik 0.48 A kreeg en niet 0.45 A. Bij een serieschakeling heb ik geredeneerd zoals u dat zegt.

Bij vraag 5d loopt het echter nog fout. Het antwoordmodel zegt dat het antwoord op vraag 5d 19 watt moet zijn. Goed, als we een stroom van 2 Amperre hebben dan moeten we een vermogen van 9*2=18 watt krijgen van de batterij.

Van de lampjes moet het dus 0.35 A zijn, dat had ik niet door. Ik dacht dat wat ze vroegen bij vraag 5b de juiste stroom was, maar ik vermoed dat het lampje dan teveel stroom zal krijgen en kortsluiting krijgt/kapot gaat. Je stelt dus mbv de klemspanning en de p-schakeling een juiste stroom opdat genoeg takken bestaan die ieder 0.35 A geven aan een lampje.

Er zijn dus 2/0.35=57/10 lampjes aanwezig. Ik zal dan fictief stellen dat er een lampje bestaat die uit 7/10 onderdelen bestaat.

(57/10) * 2.1 (vermogen 1 lampje!) = 12 watt.

Totaal van de batterij en lampje is dan 30 watt. Afzonderlijk is dat 18 watt en 12 watt.

Is het antwoordmodel hier ook fout?
pi_132932983
quote:
0s.gif Op dinsdag 5 november 2013 18:01 schreef DefinitionX het volgende:
Super! Ik zat te zoeken naar andere vergelijkingen toen ik 0.48 A kreeg en niet 0.45 A. Bij een serieschakeling heb ik geredeneerd zoals u dat zegt.

Bij vraag 5d loopt het echter nog fout. Het antwoordmodel zegt dat het antwoord op vraag 5d 19 watt moet zijn. Goed, als we een stroom van 2 Amperre hebben dan moeten we een vermogen van 9*2=18 watt krijgen van de batterij.

Van de lampjes moet het dus 0.35 A zijn, dat had ik niet door. Ik dacht dat wat ze vroegen bij vraag 5b de juiste stroom was, maar ik vermoed dat het lampje dan teveel stroom zal krijgen en kortsluiting krijgt/kapot gaat. Je stelt dus mbv de klemspanning en de p-schakeling een juiste stroom opdat genoeg takken bestaan die ieder 0.35 A geven aan een lampje.

Er zijn dus 2/0.35=57/10 lampjes aanwezig. Ik zal dan fictief stellen dat er een lampje bestaat die uit 7/10 onderdelen bestaat.

(57/10) * 2.1 (vermogen 1 lampje!) = 12 watt.

Totaal van de batterij en lampje is dan 30 18 watt. Afzonderlijk is dat 18 12 watt en 12 6 watt.

Is het antwoordmodel hier ook fout?
Goede vraag. Je kunt in de praktijk natuurlijk alleen maar een geheel aantal lampjes aansluiten, en als je 5 lampjes parallel neemt, dan krijgen ze nog een te hoge spanning, dus moet je 6 lampjes nemen. Het is wat vreemd dat men niet is uitgegaan van fietslampjes met een vermogen van precies 2 watt, want dan zou alles mooi uitkomen: de batterij zou dan 2 ampère leveren, en dus een totaal vermogen van 18 watt, waarbij de 6 lampjes samen 12 watt verbruiken en 6 watt in het inwendige van de batterij wordt omgezet in warmte.

Maar goed, bij deze vraag wordt er stilzwijgend vanuit gegaan dat de weerstanden van de lampjes constant zijn. Bij een eerdere vraag hier heb je gezien dat dat in werkelijkheid niet zo is, maar omdat hier niets is gegeven over de stroom door de lampjes in functie van de aangelegde spanning moet je aannemen dat die weerstand constant is. Anders gezegd, je moet aannemen dat de lampjes zich gedragen als een ohmse weerstand. Die weerstand kun je berekenen, dat is

6/0,35 Ω

en voor 6 lampjes parallel dus

1/0,35 Ω

De stroomsterkte die de batterij levert wordt dan

9/(1,5 + 1/0,35) A

en het totale vermogen dat de batterij levert is dan

81/(1,5 + 1/0,35) W ≈ 18,59 W

Afgerond dus inderdaad 19 watt.

[ Bericht 0% gewijzigd door Riparius op 05-11-2013 19:08:39 ]
pi_132933461
quote:
0s.gif Op dinsdag 5 november 2013 18:31 schreef Riparius het volgende:

[..]

Goede vraag. Je kunt in de praktijk natuurlijk alleen maar een geheel aantal lampjes aansluiten, en als je 5 lampjes parallel neemt, dan krijgen ze nog een te hoge spanning, dus moet je 6 lampjes nemen. Het is wat vreemd dat men niet is uitgegaan van fietslampjes met een vermogen van precies 2 watt, want dan zou alles mooi uitkomen: de batterij zou dan 2 ampère leveren, en dus een totaal vermogen van 18 watt, waarbij de 6 lampjes samen 12 watt verbruiken en 6 watt in het inwendige van de batterij wordt omgezet in warmte.

Maar goed, bij deze vraag wordt er stilzwijgend vanuit gegaan dat de weerstanden van de lampjes constant zijn. Bij een eerdere vraag hier heb je gezien dat dat in werkelijkheid niet zo is, maar omdat hier niets is gegeven over de stroom door de lampjes in functie van de aangelegde spanning moet je aannemen dat die weerstand constant is. Anders gezegd, je moet aannemen dat de lampjes zich gedragen als een ohmse weerstand. Die weerstand kun je berekenen, dat is

6/0,35 Ω

en voor 6 lampjes parallel dus

1/0,35 Ω

De stroomsterkte die de batterij levert wordt dan

9/(1,5 + 1/0,35) A

en het totale vermogen dat de batterij levert is dan

81/(1,5 + 1/0,35) W ≈ 18,59 W

Afgerond dus inderdaad 19 watt.
Dank u!
pi_132934219
Vermoeden die ik heb: Tijdreizen is al wss gedaan door iemand. Wij merken er niets van omdat diegene naar een past/future is gegaan in een dimensie dat is gesplitst van deze dimensie.

Vraag: wat zegt fysica hierover?
pi_133095679
Ik kom hier maar niet uit en het is erg frustrerend:

diodenschaltung_gesamt_800.png

Het p-gebied is aangesloten op de positieve pool in de middelste schakeling, maar waarom? Het gaat hier om de stroom, ja, maar in theorie en in de diode gaat het om elektronen. De elektronenstroom is van de negatieve pool naar de positieve pool, dus het is niet logisch dat het p-gebied aangesloten is op de positieve pool.

Wat ik vandaag geleerd heb: het p-gebied heeft positieve gaten en het n-gebied heeft vrije elektronen. Wanneer vrije elektronen van het n-gebied naar het p-gebied gaan, worden deze geblokkeerd door de elektrostratische krachten tussen twee negatieve ladingen, namelijk enerzijds die van het vrije elektron en anderzijds van het negatieve atoom in het p-gebied.

Als je naar de afbeelding kijkt dan zie je in de 3e schakeling dat het p-gebied aangesloten is aan de negatieve pool van de schakeling. Het lampje brandt hier niet.

De enige redenering dat het lampje dan niet zal branden is het feit dat de elektronen in het n-gebied de elektronen van de bron zullen weerkaatsen/blokkeren. Maar wat nou als je meer elektronen hebt dan het n-gebied bezit in de vorm van vrije elektronen? Het aangesloten p-gebied op de negatieve pool zal toch zonder wat ik hiervoor heb beschreven de elektronenstroom blokkeren omdat het negatief geladen atomen bezit?

Besides, in de middelste schakeling zie je ook dat elektronen van de negatieve pool na het doorlopen van het lampje tegen de diode aankomt, het p-gebied zal deze stroom moeten blokkeren. Dus dan heb je ook geen gesloten stroomkring en kan het lampje niet branden door het stoppen van de toevoer van elektronen, cq de stroom.

Ik ben denk ik goed door de war van dit concept. Ik ga het morgen nogmaals doornemen, maar als iemand hier licht op kan werpen, graag.
pi_133107219
quote:
0s.gif Op zaterdag 9 november 2013 23:51 schreef DefinitionX het volgende:
Ik kom hier maar niet uit en het is erg frustrerend:

[ afbeelding ]

Het p-gebied is aangesloten op de positieve pool in de middelste schakeling, maar waarom? Het gaat hier om de stroom, ja, maar in theorie en in de diode gaat het om elektronen. De elektronenstroom is van de negatieve pool naar de positieve pool, dus het is niet logisch dat het p-gebied aangesloten is op de positieve pool.

Wat ik vandaag geleerd heb: het p-gebied heeft positieve gaten en het n-gebied heeft vrije elektronen. Wanneer vrije elektronen van het n-gebied naar het p-gebied gaan, worden deze geblokkeerd door de elektrostratische krachten tussen twee negatieve ladingen, namelijk enerzijds die van het vrije elektron en anderzijds van het negatieve atoom in het p-gebied.

Als je naar de afbeelding kijkt dan zie je in de 3e schakeling dat het p-gebied aangesloten is aan de negatieve pool van de schakeling. Het lampje brandt hier niet.

De enige redenering dat het lampje dan niet zal branden is het feit dat de elektronen in het n-gebied de elektronen van de bron zullen weerkaatsen/blokkeren. Maar wat nou als je meer elektronen hebt dan het n-gebied bezit in de vorm van vrije elektronen? Het aangesloten p-gebied op de negatieve pool zal toch zonder wat ik hiervoor heb beschreven de elektronenstroom blokkeren omdat het negatief geladen atomen bezit?

Besides, in de middelste schakeling zie je ook dat elektronen van de negatieve pool na het doorlopen van het lampje tegen de diode aankomt, het p-gebied zal deze stroom moeten blokkeren. Dus dan heb je ook geen gesloten stroomkring en kan het lampje niet branden door het stoppen van de toevoer van elektronen, cq de stroom.

Ik ben denk ik goed door de war van dit concept. Ik ga het morgen nogmaals doornemen, maar als iemand hier licht op kan werpen, graag.
• Plaatje links: schakelaar staat open, lampje brandt niet.
• Plaatje midden: diode goed geschakeld, lampje brandt wel.
• Plaatje rechts: diode verkeerd geschakeld, lampje brandt niet.

Hieruit concludeer ik dat ze willen duidelijk maken dat een verkeerd geschakelde diode voorkomt dat er een stroompje gaat lopen.
pi_133107481
Dat klopt lyolyrc, maar wat ik bedoel is op wat voor specifieke manier die diode de stroom stopt. Dat heeft volgens mijn boek te maken met het p- en n-gebied van de diode.
  woensdag 13 november 2013 @ 11:07:30 #19
213344 Ypmaha
Onjuist bejegend
pi_133211411
Een kabel naar een wandcontactdoos voor algemeen gebruik is volgens schema aangesloten en beveiligd met D-patronen volgens de NEN 3241. De kabel is direct tegen een houten wand bevestigd. De omgevingstemperatuur is 25 graden celsius. De kerndoorsnede moet zijn:......

Hoe kun je dit nou weten? De kabel is 5 aderig (volgens de tekening), en de NEN 1010 verwijst daarbij door naar tabel A.52-5 kolom 4 als ik het goed heb, maar dan zie je allemaal maximale stroomwaardes (Iz) voor allemaal verschillende kerndoorsnedes. Hoe weet je nou welke kerndoorsnede hij moet zijn?

Overigens zijn de zekeringen 25A.
pi_133368808
Hoe onthouden jullie wat onverzadigde/verzadigde/onvertakte/vertake bindingen in de koolstofchemie zijn?

Edit:

Een beter woord: hoe onderscheiden jullie dat het best.
pi_133432539
Ik heb de lewis structuur van H3S^+.

Ik zie niet de logica in waar er een elektron tekort komt in de lewis structuur, uitgaande van de octet-regel. Ik denk ook dat ik hiermee mijn eigen vraag beantwoord heb, maar als iemand mee kan kijken, graag.

H3S^+ teken je volgens mijn boek met 3 covalente bindingen (met waterstof) op het centrale zwavel atoom en één niet-bindende elektronpaar. De octet-regel voor het zwavel atoom is vervuld en de waterstof atomen hebben ook hun deel.

Waar komt dan het positief teken van H3S+ vandaan? Zwavel staat in groep 6A, dus heeft 6 valentie elektronen. Drie van deze gaan elk een binding aan met een waterstof atoom. Dan blijven er 3 over, maar omdat het om een positief atoom gaat, hebben we 2 valentie elektronen over. Toch heeft zwavel 8 elektronen in zijn buitenste schil.

Ik las dat periode 3 atomen niet volgens de octet-regel werken, dus dan moet dat het verklaren denk ik. Dan snap ik nog niet helemaal hoe ze aan het positief teken komen.

[ Bericht 0% gewijzigd door DefinitionX op 19-11-2013 23:42:21 ]
pi_133432864
quote:
0s.gif Op maandag 18 november 2013 09:30 schreef DefinitionX het volgende:
Hoe onthouden jullie wat onverzadigde/verzadigde/onvertakte/vertake bindingen in de koolstofchemie zijn?

Edit:

Een beter woord: hoe onderscheiden jullie dat het best.
Stom, vergeten te reageren.

Onverzadigd onthoud ik doordat er dus nog wat aangekoppeld kan worden waardoor de dubbele binding verdwijnt. Hij is in feite incompleet. Bedoel je hetzelfde met vertakt/onvertakt? Of bedoel je specifieke moleculen? Dat andere reageer ik misschien later nog op. Moet het ff goed lezen en dan edit ik deze post wel.
We both are here to have the fun
So let it whip
pi_133433697
quote:
0s.gif Op dinsdag 19 november 2013 23:27 schreef DefinitionX het volgende:
Ik heb de lewis structuur van H3S^+.

Ik zie niet de logica in waar er een elektron tekort komt in de lewis structuur, uitgaande van de octet-regel. Ik denk ook dat ik hiermee mijn eigen vraag beantwoord heb, maar als iemand mee kan kijken, graag.

H3S^+ teken je volgens mijn boek met 3 covalente bindingen (met waterstof) op het centrale zwavel atoom en één niet-bindende elektronpaar. De octet-regel voor het zwavel atoom is vervuld en de waterstof atomen hebben ook hun deel.

Waar komt dan het positief teken van H3S+ vandaan? Zwavel staat in groep 6A, dus heeft 6 valentie elektronen. Drie van deze gaan elk een binding aan met een waterstof atoom. Dan blijven er 3 over, maar omdat het om een positief atoom gaat, hebben we 2 valentie elektronen over. Toch heeft zwavel 8 elektronen in zijn buitenste schil.

Ik las dat periode 3 atomen niet volgens de octet-regel werken, dus dan moet dat het verklaren denk ik. Dan snap ik nog niet helemaal hoe ze aan het positief teken komen.
Je moet je redenatie beginnen bij H2S. Zwavel heeft 6 elektronen in de buitenste schil, waarvan 2 in de 3s-orbitaal en 4 in de 3p-orbitaal. Twee elektronen worden gebruikt om bindingen te vormen met de waterstoffen. Dan blijven er 4 elektronen over die twee elektronenparen vormen.

Wanneer H2S een proton opneemt, moet het zwavelatoom een elektronenpaar opofferen om een binding te vormen met dat proton. Wanneer we dan de lading van zwavel berekenen, zien we dat zwavel een positieve lading heeft gekregen, want één elektron van het opgeofferde vrije elektronenpaar is gedoneerd aan het proton.
pi_133434812
quote:
2s.gif Op woensdag 20 november 2013 00:00 schreef lyolyrc het volgende:

[..]

Je moet je redenatie beginnen bij H2S. Zwavel heeft 6 elektronen in de buitenste schil, waarvan 2 in de 3s-orbitaal en 4 in de 3p-orbitaal. Twee elektronen worden gebruikt om bindingen te vormen met de waterstoffen. Dan blijven er 4 elektronen over die twee elektronenparen vormen.

Wanneer H2S een proton opneemt, moet het zwavelatoom een elektronenpaar opofferen om een binding te vormen met dat proton. Wanneer we dan de lading van zwavel berekenen, zien we dat zwavel een positieve lading heeft gekregen, want één elektron van het opgeofferde vrije elektronenpaar is gedoneerd aan het proton.
Bedankt! Dit rationaliseert het.
pi_133467221
11j6emu.jpg

11d....Met zulk soort vragen heb ik moeite. Bij sommige wiskundige vergelijkingen kun je voor de nulpunten waardes invullen die logisch klinken.

Mijn gevoel zegt om bij 11d twee vergelijkingen in 1 te doen en dan een onbekende te berekenen. Maar dat heeft geen succes geboekt bij mij.

Hoe los je zo'n opgave op?
abonnementen ibood.com bol.com Coolblue
Forum Opties
Forumhop:
Hop naar:
(afkorting, bv 'KLB')